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ABSTRACT 

STUDY QUESTION: What are the current recommended criteria for morphological assessment of oocytes, zygotes, and embryos?

SUMMARY ANSWER: The present ESHRE/Alpha Scientists in Reproductive Medicine consensus document provides several novel 
recommendations to assess oocyte and embryo morphology and rank embryos for transfer.

WHAT IS KNOWN ALREADY: A previous Alpha Scientists in Reproductive Medicine/ESHRE consensus on oocyte and embryo mor-
phological assessment was published in 2011. After more than a decade, and the integration of time-lapse technology into embryo 
culture and assessment, a thorough review and update was needed.

STUDY DESIGN, SIZE, DURATION: A working group consisting of Alpha Scientists in Reproductive Medicine executive committee 
members and ESHRE Special interest group of Embryology members formulated recommendations on oocyte and embryo 
assessment.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The working group included 17 internationally recognized experts with exten-
sive experience in clinical embryology. Seven members represented Alpha Scientists in Reproductive Medicine and eight members 
represented ESHRE, along with to two methodological experts from the ESHRE central office. Based on a systematic literature search 
and discussion of existing evidence, the recommendations of the Istanbul Consensus (2011) were reassessed and, where appropriate, 
updated based on consensus within the working group. A stakeholder review was organized after the updated draft was finalized. 
The final version was approved by the working group, the Alpha executive committee and the ESHRE Executive Committee.
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MAIN RESULTS AND THE ROLE OF CHANCE: This updated consensus paper provides 20 recommendations focused on the 
timeline of preimplantation developmental events and morphological criteria for oocyte, zygote, and embryo assessment. Based on 
duration of embryo culture, recommendations are given on the frequency and timing of assessments to ensure consistency and ef-
fectiveness.

LIMITATIONS, REASONS FOR CAUTION: Several criteria relevant to oocyte and embryo morphology have not been well studied, 
leading to either a recommendation against their use for grading or for their use in ranking rather than grading. Future updates may 
require further revision of these recommendations.

WIDER IMPLICATIONS OF THE FINDINGS: This document provides embryologists with advice on best practices when assessing oo-
cyte and embryo quality based on the most recent evidence.

STUDY FUNDING/COMPETING INTEREST(S): The consensus meeting and writing of the paper were supported by funds from ESHRE 
and Alpha Scientists in Reproductive Medicine. The working group members did not receive any payment. G.C. declared payments 
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DISCLAIMER: This Good Practice Recommendations (GPRs) document represents the consensus views of the members of this working group based 
on the scientific evidence available at the time of the meeting. GPRs should be used for information and educational purposes. They should not be 
interpreted as setting a standard of care or be deemed inclusive of all proper methods of care or be exclusive of other methods of care reasonably di-
rected to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations 
based on locality and facility type.
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Introduction
Assessment of human embryo development is an essential, but 
challenging, task in the IVF laboratory. Embryos are assessed by 
embryologists to select the most likely to be viable for intrauter-
ine transfer, cryopreservation or biopsy for preimplantation ge-
netic testing (PGT). Since the early days of IVF in the 1980s when 
embryos were optimistically viewed as ‘nice, very nice, or very 
very nice’ (Jacques Cohen, personal communication), a relatively 
large number of early embryo morphological features have been 
identified and investigated for their association with viability, im-
plantation, live birth and chromosomal status. Yet, morphology 
assessment remains largely subjective and prone to inter- and 
intra-observer and inter-laboratory variability (Arce et al., 2006; 
Baxter Bendus et al., 2006; Mart�ınez-Granados et al., 2017; Storr 
et al., 2017).

In the past decade, the most significant advancement in em-
bryo assessment has been the introduction of time-lapse micros-
copy technologies (TLT). This has led to the emergence of 
‘morphokinetics’. As the term implies, morphokinetics repre-
sents the integration of morphology (the form and structure of 
embryos) with kinetics (the dynamics of their development), pro-
viding a comprehensive framework for understanding and evalu-
ating embryo development in vitro. These technologies allow 
continuous observation of embryo development, with minimal 
manipulation or perturbation of culture (ESHRE Working group 
on Time-lapse technology et al., 2020).

Hundreds of papers have been published on embryo assess-
ment. The studies are mostly retrospective and heterogeneous 
with respect to some key parameters including patient popula-
tion, outcome measures, control for confounders, laboratory 
procedures, and embryo culture conditions. Furthermore, mor-
phokinetic studies, as well as classical morphological studies, 
may be influenced by maternal age, smoking status, ovarian 
stimulation protocols, and insemination methods, among other 
factors (Braga et al., 2015; Ubaldi et al., 2016; Grøndahl et al., 2017; 

Barrie et al., 2021a; Bamford et al., 2022). Nonetheless, TLT obser-
vations have significantly contributed to our understanding of 
developmental events, and morphology assessments are now en-
hanced by morphokinetics.

Over a decade ago, Alpha Scientists in Reproductive Medicine 
(ALPHA) and ESHRE special interest group of Embryology collabo-
rated to produce the Istanbul Consensus on assessing oocytes, 
zygotes, and embryos (Alpha Scientists in Reproductive Medicine 
and ESHRE Special Interest Group Embryology, 2011).

The Istanbul Consensus (2011) established common criteria 
and terminology for grading oocytes, zygotes and embryos, which 
are now updated in this paper through close examination, compi-
lation, analysis and interpretation of data published in the inter-
vening years. Most importantly, the new recommendations 
incorporate some embryo morphokinetic features that have been 
elucidated since the introduction of TLT and that can inform and 
complement the static observation approach. The aim of this 
document is to help re-establish standard terminology and as-
sessment criteria across laboratories.

Terminology
Embryologists routinely make decisions on disposition of oocytes 
and embryos, that is, whether they are clinically usable or should 
be discarded. Clinical use of oocytes and embryos is defined as 
use for an IVF/ICSI treatment, biopsy/PGT, cryopreservation, 
transfer, and donation.

In the updated set of recommendations provided in this man-
uscript, the working group used the terms embryo grading, rank-
ing, and selection. Embryo grading is the evaluation of embryos 
using a specific set of criteria to assign a quality score: the num-
ber, size, and shape of blastomeres, the degree of fragmentation, 
the inner cell mass (ICM) and trophectoderm (TE) morphology 
and expansion, etc. Embryo ranking refers to the procedure of pri-
oritizing clinically usable embryos based on grading and other as-
sessment criteria, from most to least favourable for transfer. 
Embryos are ranked according to their estimated potential for 
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implantation and development, which is determined by morpho-

logical and, when available, genetic factors. This is a prioritiza-

tion of which embryo(s) to transfer first. Embryo selection for 

transfer involves consideration of ranking and other factors to se-

lect embryos for transfer into the uterus. The goal is to select the 

embryo(s) with the highest likelihood of resulting in a successful 

pregnancy and live birth.

Materials and methods
The present good practice recommendations document is the re-

sult of a multiple virtual meetings over a 1-year period and a 

2-day consensus meeting of a working group (WG) of expert pro-

fessionals representing ALPHA and ESHRE. As a starting point for 

the update process, a survey was created to collect information 

on current practice in ART centres regarding the application of 

the Istanbul Consensus (2011) recommendations. The question-

naire had three sections, with mostly multiple-choice answers; 

it inquired about the country of practice, the classification 

system in use, the adoption of the Istanbul Consensus (2011) rec-

ommendations, and considerations regarding the use of other 

technologies including TLT, artificial intelligence (AI), and PGT 

(Supplementary Data SI). Respondents were ensured anonymity 

as no identifying information was requested. Nonetheless, they 

were not allowed to take the survey more than once from the 

same device. The survey was distributed among ALPHA and 

ESHRE members and posted on the two societies’ websites and 

social media pages. It was requested that one senior representa-

tive of the centre complete the survey. In total, 833 responses 

were collected between 21 November 2022 and the second of 

January 2023. Survey results can be found in Supplementary 

Data SII.
In addition, data on oocyte and embryo static and dynamic as-

sessment published up to May 2024 were collected from the liter-

ature in PubMed/MEDLINE. All titles and abstracts were 

screened. Only papers considered to be relevant were selected 

and included in the text. Papers published after this date were 

manually included if deemed relevant for this manuscript. 

References retrieved from the literature were complemented 

with further key references identified by the WG members. The 

paper quality was assessed using the GRADE Pro software 

(McMaster University, USA). The recommendations for clinical 

practice were formulated based on the expert opinion of the WG, 

taking into consideration the available evidence and results of 

the survey.
During the consensus meeting, the results of the survey, sci-

entific evidence and personal clinical experience were integrated 

into presentations by experts on specific topics. After the presen-

tation of the topic, each proposed recommendation for assess-

ment was discussed until consensus was reached within the 

group. An updated text including the most relevant papers was 

prepared and consensus points were included. After approval of 

the manuscript by the meeting participants, the final draft was 

published on the ALPHA and ESHRE websites between 17 May 

2024 and 17 June 2024 for stakeholder review. In total, 157 

comments were received and considered when relevant. The re-

view report is available on www.eshre.eu/guidelines and https:// 

alphascientists.org/.
The final draft of this manuscript was approved by the execu-

tive committee members of both societies. Abbreviations used 

throughout this article are listed in Supplementary Data SIII.

Current data on oocyte and embryo 
assessment criteria
1. Expected timeline of embryo development
Development of the human embryo begins with fertilization and 
continues with a series of restrictive mitotic events (cleavage) 
each of which doubles the cell number as the embryo develops 
from a single cell into a multicellular blastocyst (Ciray et al., 
2014). At fertilization, once the two pronuclei break down, pater-
nal and maternal chromosomes are assembled into a bipolar mi-
totic spindle, before sister chromatids are orderly segregated in 
the first two blastomeres at first cleavage. The resulting undiffer-
entiated daughter cells are expected to be genetically identical. 
In the initial developmental phases, blastomere function is under 
the primary control of a sophisticated regulatory mechanism 
guided by maternal factors (Sha et al., 2020). However, recent 
studies have investigated the fine details of the first event of 
chromosome segregation in the human embryo, revealing a 
highly error-prone mechanism (Currie et al., 2022). Although the 
exact timing is yet to be elucidated, embryonic genome activa-
tion is well underway by the 8-cell stage, with the concomitant 
degradation of maternal transcripts (Braude et al., 1988; Vassena 
et al., 2011; Asami et al., 2022; Yuan et al., 2023).

Since the competence of the human embryo is also reflected 
in its developmental timeline, assessment of morphology should 
be in accordance with predefined times.

The original Istanbul Consensus (2011) on embryo assessment 
proposed specific timings for observations of fertilized oocytes 
and embryos, and their expected stage of development at these 
time points. These timings were relative to the insemination time 
and aimed to reflect when the events of interest occur generally 
(Table 1). Times for observations were provided for the following 
stages: fertilization, syngamy, early cleavage, Day-2, -3, -4 and -5 
embryo assessment. The Istanbul Consensus (2011) differenti-
ated between IVF- and ICSI-derived embryos only for one stage of 
development: early cleavage. Specifically, the 2-cell stage was 
proposed to be checked 2 h earlier post ICSI (26 ± 1 h post- 
insemination (hpi)), than IVF (28 ± 1 hpi) (Alpha Scientists in 
Reproductive Medicine and ESHRE Special Interest Group 
Embryology, 2011). The rationale behind this suggestion is that 
pronuclear formation post IVF is observed about 1 h later than 
post ICSI (Nagy et al., 1998), where the cumulus-corona complex, 
zona pellucida (ZP) and oolemma are bypassed, conserving the 
time required for the spermatozoon to traverse this path (Payne 
et al., 1997).

Studies have shown that early cleavage is an independent pre-
dictor of embryo quality (in terms of cell number and morphol-
ogy at later cleavage stages), blastocyst formation, pregnancy 
and birth, although there were apparent differences between 
IVF- and ICSI-derived embryos (Shoukir et al., 1997; Lundin et al., 
2001; Van Montfoort et al., 2004).

Several subsequent reports of the relative morphokinetic tim-
ings of IVF- and ICSI-derived embryos have been described in the 
literature and were considered in this revised version of the 
Istanbul Consensus. For example, several studies reported that 
only the timing of the first cleavage was affected by fertilization 
method, with IVF embryos reaching the 2-cell stage significantly 
later than their ICSI counterparts (Dal Canto et al., 2012b; 
Kirkegaard et al., 2016). Another study detected comparative 
delays in IVF embryo development beyond the 2-cell stage of 1.5 
± 1.1 h (Bodri et al., 2015). A recent randomized controlled study 
compared morphokinetics of 373 sibling IVF and ICSI embryos 
and reported that only time to 2-cell (t2) was significantly 
delayed in IVF embryos (De Munck et al., 2022). A large TLT study 
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Table 1. Time lapse data generated reference timings related to specific embryo developmental stage assessments.

Morphokinetic timings are obtained from manually annotated embryos in vitro (n¼140 872 2PNs—56 066 IVF and 84 806 ICSI) (Unpublished Care Fertility 
multicentre data 2013–2022), fresh oocytes only. Nomenclature and definitions are based on Ciray et al. (2014). Regarding Days 6 and 7 observations, this dataset 
does not have sufficient data available to offer guidance for observation. However, see Section 6 (blastocyst stage) regarding assessment of blastocysts beyond 
Day 5.
Hpi, hours post-insemination.
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of 2376 embryos reported that t2 was 0.98 h earlier in ICSI- 
derived embryos (excluding those from donor sperm), while time 
to initiation of blastulation (tSB) and time to full blastocyst (tB) 
were 1.157 and 1.510 h later, respectively, compared with IVF- 
derived embryos (Barrie et al., 2021a).

Furthermore, many morphokinetic-based studies have inves-
tigated the possible influence of other intrinsic and extrinsic fac-
tors on the timing of embryo development (e.g. BMI, age, culture 
media and oxygen concentration) (ESHRE Working group on 
Time-lapse technology et al., 2020). Two of the most studied pa-
tient variables are age of gamete providers and BMI albeit with 
varying findings and no meta-analyses or definitive studies yet 
available (Lebovitz et al., 2021; Setti et al., 2021; Bellver, 2022; 
Boucret et al., 2022; Hoek et al., 2022).

Whether ovarian stimulation protocol impacts embryo devel-
opmental timing has also been investigated using morphokinetic 
analyses, with some apparent differences during early cleavage 
stages, but no effect on overall embryo quality (Barrie et al., 
2017a; Mumusoglu et al., 2017; Dietrich et al., 2020).

Other factors known to affect embryo development, such as 
temperature and pH, can influence embryo morphokinetics; 
lower temperature and culture medium pH drift (typically in an 
alkaline direction) are associated with slower embryo develop-
ment (Swain, 2015; Wale and Gardner, 2016). The impact of oxy-
gen level during culture, a major influencer of embryo 
development, has not been extensively studied. However, devel-
opment and implantation rates decrease when atmospheric oxy-
gen level is employed, compared with lower, more physiological 
levels (Quinn and Harlow, 1978; Gardner and Kelley, 2017). Using 
TLT imaging, and similar to data in the mouse (Wale and 
Gardner, 2010), a prospective study compared the developmental 
timings of embryos according to oxygen tensions, reporting sig-
nificantly slower development in embryos cultured in 20% oxy-
gen compared with 5% (Kirkegaard et al., 2013).

There has been discussion regarding possible unconscious 
bias in selection of faster developing embryos, which may impact 
the sex ratio. However, a recent large study showed sex ratios, 
from an IVF program using algorithmic morphokinetic selection, 
to be in line with the World Health Organisation’s (WHO) 
reported secondary sex ratios for natural conception (Smith 
et al., 2024).

Utilizing TLT, a number of heterogeneous studies have com-
pared developmental timings according to the chromosomal sex 
of the embryo, with conflicting results (e.g. Bodri et al., 2016; 
Serdarogullari et al., 2014). More comparative large studies are 
needed, however, Fraire-Zamora et al. (2023) aimed to avoid con-
founding factors by using strict inclusion criteria and reported no 
significant differences in morphokinetics between male and fe-
male embryos (Fraire-Zamora et al., 2023).

Another area of scrutiny has been embryo chromosome sta-
tus. A recent systematic review and meta-analysis incorporating 
over 40 000 embryos concluded that ten morphokinetic variables 
were significantly delayed in aneuploid embryos, most notably 
from t8 (development at the 8-cell stage) to the expanded blasto-
cyst stage (Bamford et al., 2022). Irregularities of cleavage, such 
as prolonged or rapid cell cycles, may be associated with DNA re-
pair activity, cellular rearrangement or failure to undergo cell cy-
cle checkpoints (Regin et al., 2022).

As some significant timing differences have been reported 
with reference to specific outcome measures such as clinical 
pregnancy and chromosome complement, morphokinetic selec-
tion algorithms are being proposed to improve embryo selection 
and thereby, shorten the time to pregnancy (Meseguer et al., 

2011; Petersen et al., 2016; Pribenszky et al., 2017; Fishel et al., 
2020). The potential of individual morphokinetic variables to pre-
dict clinical outcomes, has recently been assessed in two large 
analyses of over 30 000 embryos; the results show that peri- 
blastulation timings have more power to predict live birth than 
traditional TE or ICM morphology (Bamford et al., 2022; Campbell 
et al., 2022a). However, two recent randomized controlled trials 
(RCTs) found no improvement in ongoing pregnancy rate or cu-
mulative live birth rate or live birth rate per transfer, when using 
TLT algorithmic selection (Ahlstr€om et al., 2022; Kieslinger et al., 
2023), corroborating the findings of the latest Cochrane review 
(Armstrong et al., 2019).

Although the studies are heterogeneous and drawing strong 
conclusions is difficult, TLT studies can help inform and optimize 
static assessment timing windows in the IVF laboratory. 
However, many laboratories do not have this technology, and the 
familiar, reliable daily descriptors remain practically applicable, 
although somewhat imprecise. Since the publication of the origi-
nal Istanbul Consensus (2011), the convention of describing the 
timing of preimplantation development in terms of number of 
days (post insemination) has come to be viewed as simplistic, 
largely due to the facility to observe the developing embryo al-
most continuously, in minutes and hours, rather than days, us-
ing TLT imaging.

Consensus points

� Standardized timing of observations is critical for reliable 
comparison of results between different laboratories, culture 
conditions, patients, and other variables. This should be set 
relative to the time of insemination, and uniformly reported 
as hours post-insemination. 

� There is an inherent variability in timing of all biological pro-
cesses; the suggested observation times reflect those at which 
the associated developmental stages occur in most cases, 
whilst accepting there are confounding and influencing fac-
tors, including human subjectivity. 

� Culture media and culture systems in general are recognized 
as having a significant impact on embryo morphokinetics; ac-
cordingly, their impact should be considered in compara-
tive studies. 

� Each laboratory is encouraged to develop and analyse its own 
datasets to determine relevant timings. Data generated by 
other laboratories may or may not be generally applicable. 

2. Oocyte
Oocyte morphology may be assessed with the aim of predicting 
the developmental competence of the resulting embryo. In the rel-
evant literature, several extra-cytoplasmic (cumulus oocyte com-
plex (COC), ZP, perivitelline space (PVS), polar body (PB), shape, 
size) and intracytoplasmic (vacuoles, refractile bodies (RFs), aggre-
gates of smooth endoplasmic reticulum clusters (sER-a), central 
granularity, colour) oocyte dysmorphic features are reported.

In this section, the predictive value of oocyte morphological 
characteristics/dysmorphism for embryo developmental poten-
tial is assessed (Table 2). Moreover, the possible use of oocytes 
that are immature at the time of oocyte retrieval following stan-
dard ovarian stimulation (so-called rescue in vitro maturation 
(rescue-IVM) is considered).

Oocyte morphological features relevant to oocyte scoring
The Istanbul Consensus (2011) described the optimal oocyte mor-
phology as an oocyte with a spherical shape enclosed by a uniform 
ZP, with a uniform translucent cytoplasm free of inclusion, and a 

A revised ESHRE/ALPHA consensus on oocyte and embryo morphology assessment | 5  



T
ab

le
 2

. O
ve

rv
ie

w
 o

f 
al

l e
vi

d
en

ce
 a

n
d

 r
ec

om
m

en
d

at
io

n
s 

fo
r 

oo
cy

te
 a

ss
es

sm
en

t.

M
or

p
h

ol
og

ic
al

 
fe

at
u

re
A

ty
p

ic
al

 p
at

te
rn

s
S

u
m

m
ar

y 
of

 r
ev

ie
w

 fi
n

d
in

gs
C

on
si

d
er

at
io

n
s

R
ec

om
m

en
d

at
io

n

Fe
rt

il
iz

at
io

n
 r

at
e

B
la

st
oc

ys
t 

fo
rm

a-
ti

on
 r

at
e

Im
p

la
n

ta
ti

on
 r

at
e

Li
ve

 b
ir

th
 r

at
e

C
u

m
u

lu
s 

oo
cy

te
 

co
m

p
le

x
 (C

O
C

)
C

om
p

ac
t 

C
O

C
A

ss
oc

ia
ti

on
 w

it
h

 lo
w

er
 

fe
rt

il
iz

at
io

n
 r

at
e 

V
er

y 
lo

w
 

�
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(R
at

ta
n

ac
h

ai
ya

n
on

t 
et

 a
l.,

 1
99

9)
 

N
/R

A
ss

oc
ia

ti
on

 w
it

h
 lo

w
er

 
p

re
gn

an
cy

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(D
al

 C
an

to
 e

t 
al

., 
20

12
a)

 

N
/R

Fu
rt

h
er

 s
tu

d
ie

s 
ar

e 
n

ec
-

es
sa

ry
 b

ef
or

e 
es

ta
b

-
li

sh
in

g 
th

e 
p

ot
en

ti
al

 
p

re
d

ic
ti

ve
 v

al
u

e 
of

 
th

is
 a

ss
es

sm
en

t 
on

 
em

b
ry

o 
co

m
p

et
en

ce

T
h

e 
p

re
se

n
ce

 o
f a

 d
en

se
 

C
O

C
 a

n
d

 a
 v

er
y 

ti
gh

t 
co

ro
n

a,
 if

 p
re

se
n

t 
in

 
m

os
t 

of
 c

ol
le

ct
ed

 
C

O
C

s 
fr

om
 o

n
e 

p
a-

ti
en

t,
 s

h
ou

ld
 b

e 
n

ot
ed

Pr
es

en
ce

 o
f 

b
lo

od
 c

lo
ts

A
ss

oc
ia

te
d

 w
it

h
 lo

w
er

 
fe

rt
il

iz
at

io
n

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(D

ay
a 

et
 a

l.,
 1

99
0;

 
Eb

n
er

 e
t 

al
., 

20
08

a)
 

A
ss

oc
ia

te
d

 w
it

h
 lo

w
er

 
b

la
st

oc
ys

t 
fo

rm
at

io
n

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(E
b

n
er

 e
t 

al
., 

20
08

a)
 

N
/R

Z
on

a 
p

el
lu

ci
d

a 
(Z

P)
D

ar
k

/T
h

ic
k

 Z
P

C
on

tr
ad

ic
to

ry
 r

es
u

lt
s:

 
N

o 
cl

ea
r 

as
so

ci
at

io
n

 
w

it
h

 f
er

ti
li

za
ti

on
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

6 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(D

e 
Su

tt
er

 e
t 

al
., 

19
96

; 
B

al
ab

an
 e

t 
al

., 
19

98
; 

Es
fa

n
d

ia
ri

 e
t 

al
., 

20
06

; 
T

en
 e

t 
al

., 
20

07
; R

ie
n

zi
 

et
 a

l.,
 2

00
8;

 S
h

i 
et

 a
l.,

 2
01

4)
 

A
ss

oc
ia

te
d

 w
it

h
 lo

w
er

 
fe

rt
il

iz
at

io
n

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

ob
se

rv
at

io
n

al
 s

tu
d

ie
s 

(B
er

tr
an

d
 e

t 
al

., 
19

95
; 

Sh
i e

t 
al

., 
20

14
; P

an
 a

n
d

 
Z

h
an

g,
 2

02
0)

 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 b

la
st

o-
cy

st
 fo

rm
at

io
n

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(B
al

ab
an

 e
t 

al
., 

20
08

) 

C
on

tr
ad

ic
to

ry
 r

es
u

lt
s:

 
N

o 
cl

ea
r 

as
so

ci
at

io
n

 
w

it
h

 im
p

la
n

ta
ti

on
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

3 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(E

sf
an

d
ia

ri
 e

t 
al

., 
20

06
; 

B
al

ab
an

 e
t 

al
., 

19
98

; 
Pa

n
 a

n
d

 Z
h

an
g,

 2
02

0)
 

A
ss

oc
ia

ti
on

 w
it

h
 lo

w
er

 
im

p
la

n
ta

ti
on

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

3 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(S

h
i e

t 
al

., 
20

14
; 

Sa
u

er
b

ru
n

-C
u

tl
er

 e
t 

al
., 

20
15

; S
ou

sa
 e

t 
al

., 
20

15
) 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 li

ve
 b

ir
th

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

3 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(S

h
i e

t 
al

., 
20

14
; 

Sa
u

er
b

ru
n

-C
u

tl
er

 
et

 a
l.,

 2
01

5;
 S

ou
sa

 
et

 a
l.,

 2
01

5)
 

Ev
id

en
ce

 is
 in

su
ffi

ci
en

t 
to

 s
u

p
p

or
t 

an
y 

n
eg

a-
ti

ve
 p

ro
gn

os
is

 o
f 

zo
n

a 
p

el
lu

ci
d

a 
ch

ar
ac

te
ri

s-
ti

cs
/d

ys
m

or
p

h
is

m
s 

on
 e

m
b

ry
o 

d
ev

el
op

-
m

en
ta

l p
ot

en
ti

al

O
oc

yt
es

 s
h

ow
in

g 
d

if
fe

r-
en

t 
Z

P 
p

h
en

ot
yp

es
 

ar
e 

su
it

ab
le

 fo
r 

cl
in

i-
ca

l u
se

.

Pe
ri

vi
te

ll
in

e 
sp

ac
e 

(P
V

S
)

La
rg

e 
PV

S
A

ss
oc

ia
ti

on
 w

it
h

 lo
w

er
 

fe
rt

il
iz

at
io

n
 r

at
e 

Lo
w

 �
�
�
�

1 
m

et
a-

an
al

ys
is

 o
f 

4 
ob

-
se

rv
at

io
n

al
 s

tu
d

ie
s 

an
d

 
2 

ob
se

rv
at

io
n

al
 s

tu
d

ie
s 

(R
ie

n
zi

 e
t 

al
., 

20
08

; S
et

ti
 

et
 a

l.,
 2

01
1;

 A
sh

ra
fi

 
et

 a
l.,

 2
01

5)
 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 b

la
st

oc
ys

t 
fo

r-
m

at
io

n
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(F
er

ra
ri

n
i Z

an
et

ti
 

et
 a

l.,
 2

01
8)

 

A
ss

oc
ia

ti
on

 w
it

h
 lo

w
er

 
im

p
la

n
ta

ti
on

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(K
ah

ra
m

an
 e

t 
al

., 
20

00
; 

Fe
rr

ar
in

i Z
an

et
ti

 
et

 a
l.,

 2
01

8)
 

N
/R

Ev
id

en
ce

 is
 in

su
ffi

ci
en

t 
to

 s
u

p
p

or
t 

an
y 

n
eg

a-
ti

ve
 p

ro
gn

os
is

 o
f a

ty
p

-
ic

al
 P

V
S

 p
h

en
ot

yp
e/

 
si

ze
 o

n
 e

m
b

ry
o 

d
ev

el
-

op
m

en
ta

l p
ot

en
ti

al

O
oc

yt
es

 s
h

ow
in

g 
d

if
fe

r-
en

t 
PV

S
 p

h
en

ot
yp

es
 

ar
e 

su
it

ab
le

 fo
r 

cl
in

i-
ca

l u
se

.

G
ra

n
u

la
te

d
 P

V
S

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 f

er
ti

li
za

ti
on

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

A
 m

et
a-

an
al

ys
is

 o
f 

3 
ob

-
se

rv
at

io
n

al
 s

tu
d

ie
s 

(S
et

ti
 e

t 
al

., 
20

11
) 

(c
on

ti
n

u
ed

)

6 | The Working Group on the update of the ESHRE/ALPHA Istanbul Consensus et al.  



T
ab

le
 2

. 
C

on
ti

n
u

ed

M
or

p
h

ol
og

ic
al

 
fe

at
u

re
A

ty
p

ic
al

 p
at

te
rn

s
S

u
m

m
ar

y 
of

 r
ev

ie
w

 fi
n

d
in

gs
C

on
si

d
er

at
io

n
s

R
ec

om
m

en
d

at
io

n

Fe
rt

il
iz

at
io

n
 r

at
e

B
la

st
oc

ys
t 

fo
rm

a-
ti

on
 r

at
e

Im
p

la
n

ta
ti

on
 r

at
e

Li
ve

 b
ir

th
 r

at
e

Po
la

r 
b

od
y 

(P
B

)
Fr

ag
m

en
te

d
 P

B
N

o 
as

so
ci

at
io

n
 w

it
h

 fe
r-

ti
li

za
ti

on
 r

at
e 

Lo
w

 �
�
�
�

1 
m

et
a-

an
al

ys
is

 o
f 

7 
ob

-
se

rv
at

io
n

al
 s

tu
d

ie
s 

(S
et

ti
 e

t 
al

., 
20

11
; 

A
sh

ra
fi

 e
t 

al
., 

20
15

) 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

o-
cy

st
 fo

rm
at

io
n

 
V

er
y 

Lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(Z
h

ou
 e

t 
al

., 
20

16
) 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 im

p
la

n
ta

ti
on

 a
te

 
V

er
y 

lo
w

 �
�
�
�

6 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(V

er
li

n
sk

y 
et

 a
l.,

 2
00

3;
 

C
io

tt
i e

t 
al

., 
20

04
; D

e 
Sa

n
ti

s 
et

 a
l.,

 2
00

5;
 

C
h

am
ay

ou
 e

t 
al

., 
20

06
; 

T
en

 e
t 

al
., 

20
07

; Z
h

ou
 

et
 a

l.,
 2

01
6)

 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 o

n
go

in
g/

d
el

iv
-

er
y 

ra
te

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(Z
h

ou
 e

t 
al

., 
20

16
) 

Fu
tu

re
 q

u
an

ti
ta

ti
ve

 
st

u
d

ie
s 

ar
e 

n
ec

es
sa

ry
 

to
 u

n
d

er
st

an
d

 t
h

e 
p

o-
te

n
ti

al
 n

eg
at

iv
e 

im
-

p
ac

t 
of

 la
rg

e 
p

ol
ar

 
b

od
ie

s 
on

 e
m

b
ry

o 
d

e-
ve

lo
p

m
en

ta
l p

ot
en

ti
al

O
oc

yt
es

 s
h

ow
in

g 
fr

ag
-

m
en

te
d

 o
r 

la
rg

e 
PB

 
ar

e 
su

it
ab

le
 fo

r 
cl

in
i-

ca
l u

se
. V

er
y 

la
rg

e 
p

o-
la

r 
b

od
y 

co
u

ld
 b

e 
as

so
ci

at
ed

 w
it

h
 a

b
-

n
or

m
al

 m
ei

ot
ic

 s
p

in
-

d
le

 c
on

fi
gu

ra
ti

on
 a

n
d

 
d

es
er

ve
 

m
or

e 
at

te
n

ti
on

La
rg

e 
PB

A
ss

oc
ia

ti
on

 w
it

h
 lo

w
er

 
fe

rt
il

iz
at

io
n

 r
at

e 
Lo

w
 �

�
�
�

1 
m

et
a-

an
al

ys
is

 o
f 

4 
ob

-
se

rv
at

io
n

al
 s

tu
d

ie
s 

(S
et

ti
 e

t 
al

., 
20

11
) 

N
/R

N
/R

N
/R

V
ac

u
ol

iz
at

io
n

Pr
es

en
ce

 
of

 v
ac

u
ol

es
A

ss
oc

ia
ti

on
 w

it
h

 lo
w

er
 

fe
rt

il
iz

at
io

n
 r

at
e 

Lo
w

 �
�
�
�

1 
m

et
a-

an
al

ys
is

 o
f 

3 
ob

-
se

rv
at

io
n

al
 s

tu
d

ie
s 

an
d

 
3 

ob
se

rv
at

io
n

al
 s

tu
d

ie
s 

(R
ie

n
zi

 e
t 

al
., 

20
08

; 
d

e 
C

� as
si

a 
et

 a
l.,

 2
01

0;
 S

et
ti

 
et

 a
l.,

 2
01

1;
 A

sh
ra

fi
 

et
 a

l.,
 2

01
5)

 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

oc
ys

t 
fo

r-
m

at
io

n
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(E

b
n

er
 e

t 
al

., 
20

05
; 

So
u

sa
 e

t 
al

., 
20

16
) 

N
/R

N
/R

Ev
id

en
ce

 w
as

 in
su

ffi
-

ci
en

t 
to

 s
u

p
p

or
t 

an
y 

n
eg

at
iv

e 
p

ro
gn

os
is

 o
n

 
em

b
ry

o 
d

ev
el

op
m

en
-

ta
l p

ot
en

ti
al

O
oc

yt
es

 s
h

ow
in

g 
va

cu
ol

es
 a

re
 s

u
it

ab
le

 
fo

r 
cl

in
ic

al
 u

se

R
ef

ra
ct

il
e 

b
od

ie
s 

(R
F)

Pr
es

en
ce

 o
f R

F
N

o 
cl

ea
r 

as
so

ci
at

io
n

 
w

it
h

 f
er

ti
li

za
ti

on
 r

at
e 

Lo
w

 �
�
�
�

1 
m

et
a-

an
al

ys
is

 o
f 

3 
ob

-
se

rv
at

io
n

al
 s

tu
d

ie
s 

an
d

 
1 

ob
se

rv
at

io
n

al
 s

tu
d

y 
(S

et
ti

 e
t 

al
., 

20
11

;
T

ak
ah

as
h

i e
t 

al
., 

20
20

) 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 b

la
st

o-
cy

st
 fo

rm
at

io
n

 
V

er
y 

Lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(T
ak

ah
as

h
i e

t 
al

., 
20

20
) 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 im

p
la

n
ta

ti
on

 a
te

 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(B

al
ab

an
 e

t 
al

. 1
99

8;
T

ak
ah

as
h

i e
t 

al
., 

20
20

) 

N
/R

Ev
id

en
ce

 w
as

 in
su

ffi
-

ci
en

t 
to

 s
u

p
p

or
t 

an
y 

n
eg

at
iv

e 
p

ro
gn

os
is

 o
f 

th
is

 p
h

en
ot

yp
e 

on
 

fu
rt

h
er

 e
m

b
ry

o 
d

ev
el

-
op

m
en

ta
l p

ot
en

ti
al

.

O
oc

yt
es

 s
h

ow
in

g 
re

fr
ac

-
ti

le
 b

od
ie

s 
ar

e 
su

it
-

ab
le

 fo
r 

cl
in

ic
al

 u
se

.

La
rg

e 
R

F 
(>

5µ
m

)
A

ss
oc

ia
ti

on
 w

it
h

 lo
w

er
 

fe
rt

il
iz

at
io

n
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(O
ts

u
ki

 e
t 

al
., 

20
07

) 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

oc
ys

t 
fo

r-
m

at
io

n
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(O
ts

u
ki

 e
t 

al
., 

20
07

) 

(c
on

ti
n

u
ed

)

A revised ESHRE/ALPHA consensus on oocyte and embryo morphology assessment | 7  



T
ab

le
 2

. 
C

on
ti

n
u

ed

M
or

p
h

ol
og

ic
al

 
fe

at
u

re
A

ty
p

ic
al

 p
at

te
rn

s
S

u
m

m
ar

y 
of

 r
ev

ie
w

 fi
n

d
in

gs
C

on
si

d
er

at
io

n
s

R
ec

om
m

en
d

at
io

n

Fe
rt

il
iz

at
io

n
 r

at
e

B
la

st
oc

ys
t 

fo
rm

a-
ti

on
 r

at
e

Im
p

la
n

ta
ti

on
 r

at
e

Li
ve

 b
ir

th
 r

at
e

A
gg

re
ga

te
s 

of
 

S
m

oo
th

 
En

d
op

la
sm

ic
 

R
et

ic
u

lu
m

 
C

lu
st

er
s 

(s
ER

-a
)

Pr
es

en
ce

 o
f s

ER
-a

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 f

er
ti

li
za

ti
on

 r
at

e 
Lo

w
 �

�
�
�

10
 o

b
se

rv
at

io
n

al
 s

tu
d

ie
s 

(O
ts

u
ki

 e
t 

al
., 

20
04

; 
Eb

n
er

 e
t 

al
., 

20
08

b
;S

� a 
et

 a
l.,

 2
01

1;
 H

at
to

ri
 

et
 a

l.,
 2

01
4;

 S
et

ti
 e

t 
al

., 
20

16
; S

h
aw

-J
ac

ks
on

 
et

 a
l.,

 2
01

6;
 G

u
ru

n
at

h
 

et
 a

l.,
 2

01
9;

 W
an

g 
et

 a
l.,

 
20

21
; X

u
 e

t 
al

., 
20

22
; 

Fa
n

g 
et

 a
l.,

 2
02

2)
 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 b

la
st

o-
cy

st
 fo

rm
at

io
n

 
Lo

w
 �

�
�
�

9 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(E

b
n

er
 e

t 
al

., 
20

08
b

; 
S

� a 
et

 a
l.,

 2
01

1;
 H

at
to

ri
 

et
 a

l.,
 2

01
4;

 S
et

ti
 e

t 
al

., 
20

16
; S

h
aw

-J
ac

ks
on

 
et

 a
l.,

 2
01

6;
 G

u
ru

n
at

h
 

et
 a

l.,
 2

01
9;

 W
an

g 
et

 a
l.,

 2
02

1;
 F

an
g 

et
 a

l.,
 

20
22

; X
u

 e
t 

al
., 

20
22

) 

N
/R

N
/R

N
/R

S
ER

-a
 p

os
it

iv
e 

oo
cy

te
s 

co
u

ld
 b

e 
in

se
m

in
at

ed
, 

b
as

ed
 o

n
 a

 c
as

e-
b

y-
 

ca
se

 e
va

lu
at

io
n

G
ra

n
u

la
ri

ty
C

en
tr

al
 c

yt
op

la
s-

m
ic

 g
ra

n
u

la
ti

on
A

ss
oc

ia
ti

on
 w

it
h

 lo
w

er
 

fe
rt

il
iz

at
io

n
 r

at
e 

Lo
w

 �
�
�
�

7 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(S

er
h

al
 e

t 
al

., 
19

97
; 

B
al

ab
an

 e
t 

al
., 

19
98

; 
K

ah
ra

m
an

 e
t 

al
., 

20
00

; 
C

h
am

ay
ou

 e
t 

al
., 

20
06

; 
W

il
d

in
g 

et
 a

l.,
 2

00
7;

 
R

ie
n

zi
 e

t 
al

., 
20

08
; Y

i 
et

 a
l.,

 2
01

9)
 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

oc
ys

t 
fo

r-
m

at
io

n
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(B
al

ab
an

 e
t 

al
., 

20
08

) 

A
ss

oc
ia

ti
on

 w
it

h
 lo

w
er

 
im

p
la

n
ta

ti
on

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(K
ah

ra
m

an
 e

t 
al

., 
20

00
) 

N
/R

T
h

e 
d

if
fe

re
n

ce
 w

as
 s

ta
-

ti
st

ic
al

ly
 in

si
gn

ifi
ca

n
t,

 
an

d
 t

h
e 

ev
id

en
ce

 w
as

 
in

su
ffi

ci
en

t 
to

 s
u

p
p

or
t 

an
y 

n
eg

at
iv

e 
p

ro
gn

o-
si

s 
of

 t
h

is
 p

h
en

ot
yp

e 
on

 e
m

b
ry

o 
d

ev
el

op
-

m
en

ta
l p

ot
en

ti
al

.

O
oc

yt
es

 s
h

ow
in

g 
cy

to
-

p
la

sm
ic

 g
ra

n
u

la
ri

ty
 

ar
e 

su
it

ab
le

 fo
r 

cl
in

i-
ca

l u
se

S
h

ap
e

O
vo

id
 o

oc
yt

e
N

o 
as

so
ci

at
io

n
 w

it
h

 fe
r-

ti
li

za
ti

on
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(E

b
n

er
 e

t 
al

., 
20

08
c;

 
B

ra
ga

 e
t 

al
., 

20
13

) 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

oc
ys

t 
fo

r-
m

at
io

n
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(E
b

n
er

 e
t 

al
., 

20
08

c)
 

N
o 

as
so

ci
at

io
n

 w
it

h
 im

-
p

la
n

ta
ti

on
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

5 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(D

e 
Su

tt
er

 e
t 

al
., 

19
96

; 
B

al
ab

an
 e

t 
al

., 
19

98
; 

C
h

am
ay

ou
 e

t 
al

., 
20

06
; 

T
en

 e
t 

al
., 

20
07

; Y
ak

in
 

et
 a

l.,
 2

00
7)

 

N
/R

Ir
re

gu
la

rl
y 

sh
ap

ed
 

oo
cy

te
s 

ar
e 

co
n

si
d

-
er

ed
 s

u
it

ab
le

 fo
r 

cl
in

i-
ca

l u
se

.

C
ol

ou
r

O
op

la
sm

 d
ar

k
n

es
s

N
o 

as
so

ci
at

io
n

 w
it

h
 fe

r-
ti

li
za

ti
on

 r
at

e 
Lo

w
 �

�
�
�

1 
m

et
a-

an
al

ys
is

 a
n

d
 2

 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(E

sf
an

d
ia

ri
 e

t 
al

., 
20

06
; 

Se
tt

i e
t 

al
., 

20
11

; S
h

i 
et

 a
l.,

 2
01

4)
 

A
ss

oc
ia

te
d

 w
it

h
 lo

w
er

 
b

la
st

oc
ys

t 
fo

rm
at

io
n

 
V

er
y 

Lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(B
al

ab
an

 e
t 

al
., 

20
08

) 

N
/R

N
/R

Fe
w

 s
tu

d
ie

s 
in

ve
st

i-
ga

te
d

 c
ol

ou
r 

va
ri

a-
ti

on
, o

ft
en

 o
b

se
rv

ed
 

to
ge

th
er

 w
it

h
 

ot
h

er
 a

n
om

al
ie

s.

O
oc

yt
es

 s
h

ow
in

g 
co

lo
u

r 
va

ri
at

io
n

 a
re

 s
u

it
ab

le
 

fo
r 

cl
in

ic
al

 u
se

.

(c
on

ti
n

u
ed

)

8 | The Working Group on the update of the ESHRE/ALPHA Istanbul Consensus et al.  



T
ab

le
 2

. 
C

on
ti

n
u

ed

M
or

p
h

ol
og

ic
al

 
fe

at
u

re
A

ty
p

ic
al

 p
at

te
rn

s
S

u
m

m
ar

y 
of

 r
ev

ie
w

 fi
n

d
in

gs
C

on
si

d
er

at
io

n
s

R
ec

om
m

en
d

at
io

n

Fe
rt

il
iz

at
io

n
 r

at
e

B
la

st
oc

ys
t 

fo
rm

a-
ti

on
 r

at
e

Im
p

la
n

ta
ti

on
 r

at
e

Li
ve

 b
ir

th
 r

at
e

Im
m

at
u

ri
ty

Im
m

at
u

re
 

M
I o

oc
yt

es
A

ss
oc

ia
ti

on
 w

it
h

 lo
w

er
 

fe
rt

il
iz

at
io

n
 r

at
e 

Lo
w

 �
�
�
�

6 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(D

e 
V

os
 e

t 
al

., 
19

99
; 

B
al

ak
ie

r 
et

 a
l.,

 2
00

4;
 

Sh
u

 e
t 

al
., 

20
07

; 
St

ra
ss

b
u

rg
er

 e
t 

al
., 

20
10

; Y
an

g 
et

 a
l.,

 2
02

1;
 

Sh
an

i e
t 

al
., 

20
23

) 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

o-
cy

st
 fo

rm
at

io
n

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(Y
an

g 
et

 a
l.,

 2
02

1)
 

N
/R

Fe
w

 li
ve

 b
ir

th
s 

ob
ta

in
ed

 f
ro

m
 r

es
-

cu
e-

IV
M

 
V

er
y 

lo
w

 �
�
�
�

4 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(R

u
b

in
o 

et
 a

l.,
 2

01
6;

 
Es

cr
ic

h
 e

t 
al

., 
20

18
; 

M
oo

n
 e

t 
al

., 
20

23
; 

Sh
an

i e
t 

al
., 

20
23

) 

D
u

e 
to

 t
h

ei
r 

lo
w

er
 d

e-
ve

lo
p

m
en

ta
l p

ot
en

-
ti

al
, i

m
m

at
u

re
 

oo
cy

te
s 

co
u

ld
 b

e 
co

n
-

si
d

er
ed

 in
 c

as
e 

of
 

p
oo

r 
p

ro
gn

os
is

 in
d

i-
vi

d
u

al
s/

co
u

p
le

s 
an

d
/ 

or
 w

h
en

 a
lt

er
n

at
iv

es
 

ar
e 

n
ot

 a
va

il
ab

le
.

Im
m

at
u

re
 

G
V

 o
oc

yt
es

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 f

er
ti

li
za

ti
on

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(E

sc
ri

ch
 e

t 
al

., 
20

18
; 

Sh
an

i e
t 

al
., 

20
23

) 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 b

la
st

o-
cy

st
 fo

rm
at

io
n

 
V

er
y 

Lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(E
sc

ri
ch

 e
t 

al
., 

20
18

) 

O
oc

yt
e 

si
ze

O
oc

yt
e 

w
it

h
 s

m
al

l 
oo

p
la

sm
 (<

10
0 

µm
 d

ia
m

et
er

)

V
er

y 
lo

w
 d

ev
el

op
-

m
en

t 
p

ot
en

ti
al

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
y 

(B
as

si
l e

t 
al

., 
20

21
) 

N
/R

N
/R

N
/R

D
u

e 
to

 t
h

ei
r 

lo
w

er
 d

e-
ve

lo
p

m
en

ta
l p

ot
en

-
ti

al
, v

er
y 

sm
al

l 
oo

cy
te

s 
co

u
ld

 b
e 

co
n

-
si

d
er

ed
 o

n
ly

 w
h

en
 

al
te

rn
at

iv
es

 a
re

 
n

ot
 a

va
il

ab
le

.
G

ia
n

t 
oo

cy
te

 (>
18

0 
µm

 d
ia

m
et

er
)

Po
te

n
ti

al
 c

om
p

li
ca

ti
on

s 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
ie

s 
(R

os
en

b
u

sc
h

 e
t 

al
., 

20
02

; K
it

as
ak

a 
et

 a
l.,

 2
02

2)
 

N
/R

N
/R

N
/R

It
 is

 r
ec

om
m

en
d

ed
 t

o 
ex

cl
u

d
e 

gi
an

t 
oo

cy
te

s 
fr

om
 a

ll
 IV

F/
IC

S
I 

tr
ea

tm
en

t 
p

ro
gr

am
s 

d
u

e 
to

 t
h

ei
r 

p
re

su
m

-
ab

ly
 p

os
si

b
le

 t
et

ra
-

p
lo

id
 o

ri
gi

n
.

C
O

C
, c

u
m

u
lu

s 
oo

cy
te

 c
om

p
le

x;
 G

V
, G

er
m

in
al

 v
es

ic
le

; I
V

M
, i

n 
vi

tr
o 

m
at

u
ra

ti
on

; M
I,

 M
et

ap
h

as
e 

I;
 N

/R
, n

ot
 r

ep
or

te
d

; P
B

, p
ol

ar
 b

od
y;

 P
V

S,
 p

er
iv

it
el

li
n

e 
sp

ac
e;

 R
F,

 r
ef

ra
ct

il
e 

b
od

ie
s.

 s
ER

-a
, a

gg
re

ga
te

s 
of

 S
m

oo
th

 E
n

d
op

la
sm

ic
 

R
et

ic
u

lu
m

 C
lu

st
er

s;
 Z

P,
 z

on
a 

p
el

lu
ci

d
a.

T
ab

le
 c

ol
ou

r 
co

d
e:

 G
re

en
: t

h
e 

oo
cy

te
 c

an
 b

e 
cl

in
ic

al
ly

 u
se

d
; Y

el
lo

w
: t

h
e 

oo
cy

te
 c

ou
ld

 b
e 

u
se

d
 w

it
h

 c
au

ti
on

ar
y 

co
n

si
d

er
at

io
n

s.
 R

ed
: t

h
e 

oo
cy

te
 is

 n
ot

 c
on

si
d

er
ed

 s
u

it
ab

le
 f

or
 c

li
n

ic
al

 u
se

.

A revised ESHRE/ALPHA consensus on oocyte and embryo morphology assessment | 9  



size-appropriate PB. Furthermore, it was noted that oocytes un-
dergo both nuclear and cytoplasmic maturation, and that these 
processes are not equivalent, nor are they necessarily 
synchronous.

The survey results showed that 35% of respondents always 
apply the Istanbul Consensus (2011) recommendations to score 
oocytes, ranging from 22% for scoring the COC to 53% scoring the 
PB (Supplementary Data SII, Fig. 3B).

Cumulus oocyte complex

Most studies show an association between COC morphology and 
biological and clinical outcomes (Daya et al., 1990; Ng et al., 1999; 
Lin et al., 2003; La Sala et al., 2009; Dal Canto et al., 2012a). More 
specifically, the presence of a compact COC and a very tight co-
rona has been found to be negatively associated with fertilization 
and pregnancy rates. On the other hand, no association was ob-
served in one study between COC morphology and fertilization 
rate or embryo cleavage (Rattanachaiyanont et al., 1999). Further 
evidence indicates that the presence of blood clots trapped in the 
COC has a negative impact on outcomes even if removed during 
oocyte collection (Daya et al., 1990; Ebner et al., 2008a).

These data suggest that such COC characteristics, if present in 
most of collected COCs from one patient, should be noted, espe-
cially if conventional IVF (cIVF) is used for insemination. However, 
further studies are necessary before establishing the potential pre-
dictive value of this assessment for embryo competence.

Zona pellucida

Different ZP phenotypes (increased thickness, irregularities of the 
surface and increased density) have been reported. Some studies 
reported that oocytes with indented, thicker, dark and/or heteroge-
neous ZP had lower fertilization rate, embryo quality, embryo de-
velopment, pregnancy, implantation, and live birth rates (Bertrand 
et al., 1995; Shi et al., 2014; Sauerbrun-Cutler et al., 2015; Sousa 
et al., 2015; Pan and Zhang, 2020; Yang et al., 2022). On the other 
hand, in several studies, ZP with diverse phenotypes showed no as-
sociation with fertilization rates, embryo quality, implantation 
rates (De Sutter et al., 1996; Balaban et al., 1998; Esfandiari et al., 
2006; Ten et al., 2007; Rienzi et al., 2008), embryo cryo-survival, or 
blastocyst and hatching rates (Balaban et al., 2008).

Only one study investigated the fertilization potential of 
oocytes without ZP (Ueno et al., 2014). Very rarely, two oocytes 
may share a single ZP. One live birth of dizygotic twins obtained 
from transfer of a pair of (zona-)conjoined blastocysts has been 
reported (Magdi, 2020). Moreover, two case reports described live 
births obtained from the transfer of embryos derived from in-
semination of (zona-)conjoined oocytes, one mature and the 
other immature (Fu et al., 2022a; Wang et al., 2022).

ZP birefringence, a refractive index derived from the polariza-
tion and propagation direction of light, has been utilized to pre-
dict the developmental potential of oocytes. Oocytes that 
exhibited high birefringence in the inner layer of the ZP were as-
sociated with higher implantation, pregnancy, and live birth 
rates compared to those with low birefringence in the inner layer 
of the ZP (Rama Raju et al., 2007; Montag et al., 2008; Madaschi 
et al., 2009). Moreover, the miscarriage rate was higher in em-
bryos transferred from oocytes with low birefringence (Madaschi 
et al., 2009). On the contrary, another study indicated no signifi-
cant differences between high and low birefringence in the inner 
layer of the ZP (Tabibnejad et al., 2018).

Evidence was insufficient to support any negative prognosis of 
ZP characteristics for embryo developmental potential. Oocytes 
showing different ZP phenotypes are therefore considered suit-
able for clinical use.

Perivitelline space

Contradictory reports are found in the literature assessing differ-
ent PVS phenotypes and developmental competence (De Sutter 
et al., 1996; Balaban et al., 1998; Hassan-Ali et al., 1998; Farhi et al., 
2002; Chamayou et al., 2006; Ten et al., 2007; Balaban et al., 2008; 
Rienzi et al., 2008; Ashrafi et al., 2015; Sauerbrun-Cutler et al., 
2015; Ferrarini Zanetti et al., 2018; Weghofer et al., 2019). Three 
studies have focused in particular on large PVS and fertilization 
rate, finding a significant negative association (De Sutter et al., 
1996; Xia, 1997; Ten et al., 2007; Rienzi et al., 2008; Setti et al., 2011; 
Ashrafi et al., 2015).

On the other hand, evidence was insufficient to support a neg-
ative prognosis for embryo developmental potential. Oocytes 
showing different PVS phenotypes are therefore considered suit-
able for clinical use.

Polar body

Large or fragmented PB are commonly reported. No significant 
association was found between PB fragmentation and fertiliza-
tion. Although some studies showed an association between dif-
ferent PB phenotypes and early embryo development (Ebner 
et al., 2000; Chamayou et al., 2006; Fancsovits et al., 2006; Rienzi 
et al., 2008; Navarro et al., 2009; Zhou et al., 2016), no association 
with implantation or clinical pregnancy was reported (Verlinsky 
et al., 2003; Ciotti et al., 2004; De Santis et al., 2005; Ten et al., 2007; 
Liu et al., 2024).

Evidence was insufficient to support any negative prognosis of 
PB size and fragmentation on embryo developmental potential. 
Oocytes showing fragmented or large PB are therefore considered 
suitable for clinical use. However, a disproportionately large PB, 
although very rare, could be associated with abnormal meiotic 
spindle morphology or positioning, and deserves more attention.

Shape

Mature human oocytes generally have a spherical shape, never-
theless oocytes with ovoid shapes are reported. Overall, an ovoid 
shape does not appear to affect laboratory and clinical outcomes 
(De Sutter et al., 1996; Balaban et al., 1998; Chamayou et al., 2006; 
Ten et al., 2007; Yakin et al., 2007; Anagnostopoulou et al., 2022). 
In case of an ovoid oocyte that leads to planar arrangement of 
blastomeres at the 4-cell stage, further development up to blasto-
cyst stage was found to be delayed (Ebner et al., 2008c).

Irregularly shaped oocytes are considered suitable for clini-
cal use.

Oocyte size

Without consideration of the ZP thickness, small (<100 μm diam-
eter) and large oocytes (≥125 μm diameter) have been reported to 
have very low developmental potential (Bassil et al., 2021).

Giant oocytes (e.g. >180 μm diameter) should be excluded 
from clinical use due to their possible tetraploid origin 
(Rosenbusch et al., 2002; Kitasaka et al., 2022). Presumably, these 
oocytes originally derive from the fusion of two primordial 
oocytes. This is suggestive of the presence of two diploid chromo-
some complements and an overall tetraploid oocyte constitution 
(Balakier et al., 2002; Rosenbusch et al., 2002; Munn�e et al., 2004). 
On the other hand, siblings of giant oocytes with normal diame-
ter have been shown to have normal developmental potential 
(Machtinger et al., 2011; Lehner et al., 2015).

Vacuolization

Vacuoles are membrane-bound, translucent and fluid-filled cyto-
plasmic inclusions that appear at the end of oocyte maturation 
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(Otsuki et al., 2004; Sfontouris et al., 2018). Vacuoles can appear 
individually or in multiples (Fancsovits et al., 2011). Very large 
vacuoles (>25 μm) might distort the oocyte cytoskeletal struc-
ture, impairing sperm-oocyte signalling, sperm binding, meiotic 
resumption, and embryo development (Wallbutton and Kasraie, 
2010; Dal Canto et al., 2017).

Different studies have shown that vacuolization is associated 
with lower fertilization rate, compromised embryo development, 
and lower blastulation and cryo-survival rates (Ebner et al., 2005; 
Balaban and Urman, 2006; Ebner et al., 2006; Ten et al., 2007; 
Balaban et al., 2008; Rienzi et al., 2008; de C�assia et al., 2010; Sousa 
et al., 2016). In particular, the association between the presence 
of vacuoles and lower fertilization was confirmed in a meta- 
analysis (Setti et al., 2011). However, in this analysis, evidence 
was insufficient to support any negative prognosis in relation to 
embryo developmental potential. Oocytes showing vacuoles are 
therefore considered for clinical use. In ICSI cases, however, care 
should be taken in avoiding injection of the sperm into a vacuole.

The so-called ‘bull’s-eye inclusion’ is a distinct, smooth, 
spherical structure that encloses vesicles and is encircled by lipid 
droplets (Sousa et al., 2016). The impact of these structures on de-
velopmental potential remains unknown.

Refractile bodies

RFs consist of a mix of lipids and dense granular material. They 
exhibit a yellow autofluorescence typical of lipofuscin 
(Sathananthan, 1994). A small number of publications have in-
vestigated the predictive value of RF and embryo developmental 
potential (Alikani et al., 1995; De Sutter et al., 1996; Balaban et al., 
1998; Ebner et al., 2000; Otsuki et al., 2004; Setti et al., 2011; 
Takahashi et al., 2020). A lower fertilization rate is associated 
with the presence of such phenotype, in particular if larger than 
5 mm (Otsuki et al., 2007).

Although fertilization rate may be affected, the evidence was 
insufficient to support any negative prognosis of this phenotype 
for further embryo development. Oocytes showing RF are there-
fore considered suitable for clinical use.

Smooth endoplasmic reticulum clusters (sER-a)

From an ultrastructural standpoint, SER-a consist of tubular 
clusters surrounded by mitochondria that appear as more 
densely packed areas than the surrounding regions (S�a et al., 
2011). SER-a have been described as potential biomarkers of oo-
cyte quality. Numerous studies suggested lower fertilization (S�a 
et al., 2011; Massarotti et al., 2021), embryo quality (Ebner et al., 
2008b; S�a et al., 2011; Braga et al., 2013; Massarotti et al., 2021; 
Wang et al., 2021) and pregnancy rates (Otsuki et al., 2004; Setti 
et al., 2016; Gurunath et al., 2019; Massarotti et al., 2021), and in-
creased miscarriage rates (Otsuki et al., 2004; Ebner et al., 2008b; 
Braga et al., 2013). Moreover, in small studies, higher rates of peri-
natal complications and birth defects were reported as being as-
sociated with this dysmorphism (Otsuki et al., 2004; Ebner et al., 
2008b; Akarsu et al., 2009; S�a et al., 2011; Mateizel et al., 2013; 
Sfontouris et al., 2018). Conversely, more recent studies and a 
meta-analysis reported no difference in fertilization rate, blasto-
cyst formation rate, neonatal outcomes (Hattori et al., 2014; 
Shaw-Jackson et al., 2016; Itoi et al., 2017; Zhang et al., 2021; Fang 
et al., 2022) or euploidy rates (Xu et al., 2022; Mizobe et al., 2023; 
Wang et al., 2023); this body of evidence reinforces the recom-
mendation, also supported by the Vienna Consensus (ESHRE 
Special Interest Group of Embryology and Alpha Scientists in 
Reproductive Medicine, 2017) that clinical use of SER-a positive 
oocytes may be considered.

Granularity

Oocytes with central granulation have been associated with de-
fective pronuclear morphology, reduced embryo quality (Ebner 
et al., 2008a; Rienzi et al., 2008), decreased cryo-survival rate, 
compromised embryo developmental competence (Balaban et al., 
2008; Ebner et al., 2008a; Rienzi et al., 2008) increased aneuploidy 
rate (Wang et al., 2023), and lower ongoing pregnancy rate 
(Kahraman et al., 2000). In contrast, other studies and meta- 
analyses suggest that centrally localized cytoplasmic granulation 
might be a normal/typical oocyte morphological feature (Wilding 
et al., 2007; Setti et al., 2011; Yi et al., 2019). Currently, there are no 
studies investigating the potential of these oocytes to produce vi-
able pregnancies. Available evidence is insufficient to support a 
negative prognostic value of this dysmorphism relevant to em-
bryo developmental potential. Oocytes showing cytoplasmic 
granularity are therefore considered suitable for clinical use.

Colour

Limited studies have investigated translucency variation, often 
observed together with other anomalies. Some have suggested 
an association between ooplasm darkness and poorer embryo 
quality (Loutradis et al., 1999; Ten et al., 2007). However, this find-
ing was not confirmed by other investigations (De Sutter et al., 
1996; Balaban et al., 1998; Esfandiari et al., 2006; Balaban et al., 
2008; Shi et al., 2014). The highly subjective nature of these obser-
vations as well as heterogeneity of the data preclude any conclu-
sions. Oocytes showing variations in translucency are therefore 
considered suitable for clinical use.

Immaturity

After standard ovarian stimulation, approximately 15–20% of 
oocytes fail to extrude the first PB and reach the metaphase II 
(MII) stage, remaining at the metaphase I (MI) or germinal vesicle 
(GV) stages (ESHRE Special Interest Group of Embryology and 
Alpha Scientists in Reproductive Medicine, 2017; ESHRE Clinic PI 
Working Group et al., 2021). Studies using polarized light micros-
copy have shown that some oocytes, despite showing a PB in the 
PVS, may still be immature, specifically being in the early 
Telophase I. At this stage, there is still a connection between the 
ooplasm and the forming PB, with the meiotic spindle of meiosis I 
positioned between the two separating cells (Rienzi et al., 2003; 
Petersen et al., 2009; Rienzi et al., 2012; Holubcov�a et al., 2019). 
Thus, only by observing the presence of the meiosis II spindle in 
the cytoplasm, oocyte meiotic maturity can be certainly 
assessed. More evidence is needed to clarify the importance of 
this assessment to predict embryo developmental fate (Rienzi 
et al., 2011; Tabibnejad et al., 2018; Halim et al., 2024).

Immature oocytes are usually not used for insemination and 
are discarded. However, in the case of poor prognosis patients 
and in patients with an unsynchronized follicle cohort, the use of 
immature oocytes that can mature after a period of in vitro cul-
ture (i.e. rescue-IVM oocytes) could contribute to the number of 
embryos obtained in each cycle, potentially increasing the overall 
chances of pregnancy (Shu et al., 2007). Several studies have 
shown that MI oocytes that mature within 2–6 h from denudation 
may be injected and may contribute to the number of available 
embryos (De Vos et al., 1999; Balakier et al., 2004; Shu et al., 2007). 
By contrast, overnight in vitro culture of MI and GV oocytes did 
not improve results. GV and MI oocytes that mature in vitro after 
24 h have compromised results in terms of fertilization and blas-
tocyst formation rates (Yang et al., 2021), most probably due to a 
higher risk of being chromosomally abnormal (Strassburger et al., 
2010). TLT analysis has also confirmed that rescue-IVM oocytes 
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differ from their sibling MII oocytes in morphokinetic profile, 
showing a delay in the early stages of embryo development 
(Faramarzi et al., 2018; Margalit et al., 2019; Shani et al., 2023). 
However, the feasibility of the rescue-IVM approach is supported 
by some studies reporting a contribution to embryo yield, and 
few live births obtained using those embryos (Rubino et al., 2016; 
Escrich et al., 2018; Moon et al., 2023; Shani et al., 2023).

Due to their lower developmental potential, immature oocytes 
could be considered for clinical use in poor prognosis cases.

Oocyte morphology and morphokinetics

Some studies investigated a possible relationship between differ-
ent cytoplasmic phenotypes and morphokinetics. Although not a 
standard procedure for oocyte assessment, ZP birefringence was 
shown in a recent study not to be correlated with embryo mor-
phokinetics (Tabibnejad et al., 2018), while another study 
reported an early t5 in oocytes with high birefringence 
(Faramarzi et al., 2017). In the latter study, tPB2, t5 and t8 (time to 
extrusion of the second polar body (PBII) and development at the 
5- and 8-cell stage, respectively), were associated with oocyte di-
ameter, while PVS size showed no association with early develop-
ment morphokinetics (Faramarzi et al., 2019). Finally, the 
incidence of failure of PBII extrusion and the incidence of mitotic 
cleavage failure in oocytes with SER-a were found to be signifi-
cantly higher than that in oocytes without SER-a (Otsuki 
et al., 2018).

Overall, individual dysmorphic features may not be strongly 
associated with viability and development potential or clinical 
outcomes. However, it is possible that occurrence of two or more 
of these features together exerts a negative influence on out-
comes (Alikani et al., 1995; Bartolacci et al., 2022).

Consensus points

� Giant oocytes should be excluded from clinical use. 
� The use of small/large oocytes and IVM-rescued oocytes 

should be documented for prognostic and traceability pur-
poses due to their apparently lower developmental potential. 

� Embryos derived from MII oocytes free of large or multiple 
vacuoles, SER-a, disproportional shapes and very large first 
PBs should be prioritized for clinical use. 

� Prenatal follow-up and the follow-up of babies born from 
oocytes with atypical phenotypes and rescue-IVM 
demands attention. 

3. Zygote stage
TLT has revealed the complexity of morphokinetic changes oc-
curring during normal (Payne et al., 1997; Mio and Maeda, 2008; 
Aguilar et al., 2014; Coticchio et al., 2018) and abnormal (Ezoe 
et al., 2022b; Wei et al., 2022) fertilization, leading to a more accu-
rate and in-depth approach to fertilization assessment. Dynamic 
monitoring of this stage was previously inaccessible by static ob-
servation. Preimplantation genetic testing for aneuploidy (PGT-A) 
is also contributing to define the chromosomal constitution of 
zygotes with pronuclear abnormalities.

In this section, the optimal timing for zygote assessment and 
the significance of zygote characteristics for embryo develop-
mental potential are reviewed.

Timing of zygote assessment
The Istanbul Consensus (2011) considered static fertilization as-
sessment as ‘straightforward, based on the observation of two 
polar bodies (PBs) and two pronuclei (PNs) at 17 ± 1 hpi’.

The survey results showed that 68% of respondents always 
apply the Istanbul Consensus (2011) recommendations to assess 
the zygote stage at 17 h ± 1 hpi (Supplementary Data SII, Fig. 3A).

Only one, albeit a very large, TLT study attempted to optimize 
the timing of PN observation (Barrie et al., 2021b). Monitoring 
more than 54 746 ICSI and 26 302 cIVF embryos, the number of 
2PN zygotes was annotated at 30-min intervals, between 15 and 
20 hpi. In both insemination groups, the interval with the highest 
proportion (>98%) of visible 2PN zygotes was 16.0–16.5 hpi. At 
later intervals, this rate progressively decreased, due to early PN 
breakdown (PNBD) in some zygotes.

Morphological features relevant to zygote assessment
The Istanbul Consensus (2011) described that the optimal fertil-
ized oocyte is a spherical oocyte with two polar bodies, and two 
centrally located, juxtaposed pronuclei that are even sized, with 
distinct membranes (Alpha Scientists in Reproductive Medicine 
and ESHRE Special Interest Group Embryology, 2011). The pronu-
clei should have comparable numbers and size of nucleolar pre-
cursor bodies (NPBs) that are ideally clustered at the region of 
membrane juxtaposition of the two PN.

The survey results showed that 68% of the respondents al-
ways apply the Istanbul Consensus (2011) recommendation to 
score the pronuclear stage (Supplementary Data SII, Fig. 3B).

The predictive value of pronuclear stage features for embryo 
quality is discussed below (Table 3).

Zygote size

Oocyte and zygote size is usually reported as diameter, projected 
area or volume. Fertilized oocytes normally undergo progressive 
and moderate shrinkage during fertilization, also as a result of 
PBII extrusion (Liu et al., 2014). One study investigated this phe-
nomenon, reporting a lack of association with live birth rate 
(Barberet et al., 2019). A more recent analysis suggested a nega-
tive correlation between zygote diameter/cytoplasmic volume 
observed at 17 hpi and blastocyst quality (Kljajic et al., 2023). 
Collectively, this evidence is insufficient and inconclusive on the 
hypothesis that zygote size can be a predictive parameter for em-
bryo developmental potential.

Pronuclei (PN)

Position. Using TLT, two studies investigated PN position as a de-
velopmental biomarker. Although rarely observed, off-centre po-
sition annotated shortly before PNBD was associated with 
abnormal division, namely trichotomous cleavage (Coticchio 
et al., 2018). Off-centre position of PNs at the time of juxtaposition 
(8–9 hpi) was found to be associated with a two-fold decrease in 
live birth rate (Barberet et al., 2019), also after multivariate analy-
sis. Notably, the feature observed in the latter study cannot be 
detected by single static observation at 16–17 hpi.

Juxtaposition. In one TLT report, lack of PN juxtaposition 
throughout fertilization was observed in 1–2% of zygotes. In this 
phenotype, cleavage, morula, and blastocyst formation rates 
were negatively affected (Ezoe et al., 2022a).

Size. PNs increase in size progressively as soon as they form, 
reaching their final size shortly before PNBD (Otsuki et al., 2017; 
Orevich et al., 2022). TLT investigation confirmed that the pater-
nal PN is normally larger than its female counterpart (Barberet 
et al., 2019; Ezoe et al., 2022b; Orevich et al., 2022). Size difference 
between the two PN tends to progressively decrease as fertiliza-
tion unfolds. If assessed in the 16–18 hpi interval or immediately 
before PNBD, this difference was smaller in zygotes that resulted 
in live births (Otsuki et al., 2017; Otsuki et al., 2019). In addition, 
results from TLT are not conclusive on the value of PN size as an 
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independent parameter associated with outcome. Collectively, 
these studies suggest that abnormalities in PN position, juxtapo-
sition and size are very rare and difficult, or near impossible, to 
monitor by static observation.

Nucleolar precursor bodies

NPBs are intra-pronuclear aggregates of fibrillar material of 
largely unknown composition. Once condensed from amorphous 
material, they increase in size and finally cluster in the region of 
PN juxtaposition. NPB condensation and clustering reflects the 
distribution of zygotic chromatin (Cavazza et al., 2021). 
Chromatin remodelling may be a pre-requisite for optimal 
chromosome-spindle microtubules interaction and, ultimately, 
chromosome congression. TLT evidence on NPBs is not consis-
tent. Studies focusing on implantation and live birth did not indi-
cate a predictive value of NPB patterning (Azzarello et al., 2012; 
Aguilar et al., 2014; Barberet et al., 2019), unless NPB speed was 
assessed with complex computational methodology (Inoue et al., 
2021; Inoue et al., 2023). Another recent investigation (Cavazza 
et al., 2021) suggested a positive association between NPB cluster-
ing in both PN in the regions of juxtaposition and higher compe-
tence for blastocyst development, confirming previous data from 
static observation (Tesarik and Greco, 1999). Such contradictions 
are expected. In fact, NPB clustering is a continuum that follows 
different kinetics in male and female PN (Mio and Maeda, 2008; 
Coticchio et al., 2018) and, once achieved, can even be lost due to 
active NPB dispersal in the few hours preceding PNBD (Cavazza 
et al., 2021). This complicates the use of NPB patterning as bio-
marker for embryo quality.

Cytoplasmic halo

The cytoplasmic halo is described as a cortical domain of the zy-
gote denoted by reduced cytoplasmic granularity. Visible in most 
zygotes (82–98%), it can be symmetrically or asymmetrically po-
sitioned (Ebner et al., 2003). Usually, the halo forms 2–4 h after PN 
appearance and disappears �1 h before PNBD (Coticchio et al., 
2018; Ezoe et al., 2020). Its formation is probably due to centripe-
tal displacement of mitochondria and other organelles towards 
the area surrounding the PNs (Squirrell et al., 2003). One TLT 
study including 1009 zygotes focused specifically on this feature 
and found that absence of the halo was strongly associated with 
abnormal cleavage and embryo attrition at cleavage and morula 
stages. However, in single vitrified-warmed embryo transfers, 
halo-positive and halo-negative blastocysts produced compara-
ble clinical outcomes (Ezoe et al., 2020). In the same study, halo 
position (symmetric or asymmetric) was not correlated with lab-
oratory or clinical outcomes. Another TLT analysis confirmed 
that live birth rate is unaffected in transfers of halo-negative em-
bryos (Barberet et al., 2019). This evidence disputes the signifi-
cance of the halo, especially if embryo culture is extended to the 
blastocyst stage.

Nulli- mono- and tri- pronuclear zygotes

A designation of normal fertilization typically relies on observa-
tion of two PN. However, in the past several years zygotes with 
other pronuclear patterns, discernible at the time of static fertili-
zation assessment, have been considered for clinical use: no visi-
ble PN (0PN), one PN (1PN) or three PN (3PN). A fourth rarer 
profile showing 2PN with one (or more) extra micro-pronucleus, 
referred to as 2.1PN, has been also occasionally reported.

0PN. Overall morphokinetic evidence does not confirm that 
embryo development can occur in the absence of formation of at 
least one PN. Rather, in all likelihood, ‘0PN zygotes’ progressing 
to the first mitosis are 2PN or, rarely, 1PN/multi-PN zygotes 

undergoing PNBD before static fertilization assessment can de-
tect PN presence (Barrie et al., 2021b). Therefore, it is not surpris-
ing that studies on ‘0PN zygotes’ (all based on static fertilization 
assessment, here only a few cited) reported rates of development, 
euploidy, implantation and live births comparable with or higher 
than those of 2PN zygotes (Liu et al., 2016; Destouni et al., 2018; 
Hondo et al., 2019; Paz et al., 2020; Fu et al., 2021; Li et al., 2021; 
Kemper et al., 2023). In fact, in general, embryos displaying faster 
morphokinetics as early as the fertilization stage are also devel-
opmentally more competent (Coticchio et al., 2023).

1PN. The Vienna Consensus recommended that 1PN rate 
should not exceed 3% and 5% in cIVF and ICSI cycles, respectively 
(ESHRE Special Interest Group of Embryology and Alpha 
Scientists in Reproductive Medicine, 2017). In unselected 1PN-de-
rived ICSI embryos, all morphokinetic times and developmental 
rates are significantly affected (Ezoe et al., 2022b). However, in 
IVF/ICSI 1PN zygotes showing a relatively larger PN size (defined 
by projected area or diameter cut-offs of ≥710 μm2 and ≥31 μm, 
respectively), cleavage and blastocyst formation rates are com-
parable with those of 2PN fertilization (Araki et al., 2018; Kai et al., 
2018). It is plausible that a larger size of the single PN reflects a 
higher, possibly diploid, DNA content. Indeed, in �50% of cases 
of monopronuclear fertilization following IVF, the presence of 
both maternal and paternal DNA inside the single PN was docu-
mented (Cohen et al., 1995; Kai et al., 2015). The genesis of bipa-
rental diploid 1PN zygotes may differ in cIVF and ICSI 
fertilization. A recent TLT investigation suggests a possible mo-
dality of formation of biparental 1PN zygotes in cIVF: if, at the 
very beginning of fertilization, the fertilizing sperm penetrates 
the oocyte near (within a radius of 18 µm) the presumed position 
of the maternal chromosomes, as suggested by the PBII localiza-
tion, the paternal and maternal chromatin may be recruited to-
gether in the formation of a single PN (Wei et al., 2022). 
Consistent with this, several studies reported that 1PN blasto-
cysts screened by PGT-A were diploid/euploid in significant pro-
portions (40–50% of tested samples), in some cases, similar to 
those of 2PN controls (Bradley et al., 2017; Capalbo et al., 2017; 
Destouni et al., 2018; Xie et al., 2018; Zhao et al., 2022). In addition, 
while such studies involved ICSI as part of the PGT-A procedure, 
live births from 1PN zygotes have also been obtained in cIVF 
cases (Li et al., 2020). Documented use of 1PN zygotes for clinical 
purposes have been numerous (here only a few are reported). 
Overall, following blastocyst culture adopted to select more de-
velopmentally competent embryos, rates of implantation, preg-
nancy, and live birth approached those derived from 2PN zygotes 
(Itoi et al., 2015; Hondo et al., 2019; Si et al., 2019; Li et al., 2020; Li 
et al., 2021; Fu et al., 2022b; Kemper et al., 2023).

3PN. According to the recommendations of the Vienna 
Consensus, polypronuclear (including 3PN) fertilization should 
be <6% (ESHRE Special Interest Group of Embryology and Alpha 
Scientists in Reproductive Medicine, 2017). Morphokinetics and 
blastocyst development of 3PN zygotes is less affected compared 
with 1PN fertilization (Ezoe et al., 2022c). The origin of 3PN 
zygotes may be digynic or di/polyandric, also depending on the 
type of insemination technique. Reports on PGT-A analysis and 
clinical use of 3PN zygotes are very rare. In a study based on 30 
3PN blastocysts the rate of diploidy/euploidy was 33% (Mutia 
et al., 2019). In a case report, an apparently healthy live birth was 
achieved from the transfer of one euploid 3PN blastocyst 
(Yalçınkaya et al., 2016). A recent report described a healthy live 
birth and normal postnatal development up to 4 years from the 
transfer of a 4PN zygote (Bredbacka et al., 2023). However, in pre-
sumptive 3PN/4PN zygotes the origin of the third/fourth PN 
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(whether true extra PN or ‘larger than usual’ micropronucleus) 
remains a matter of ambiguity.

Micropronuclei. At the time of PN assessment, one or more 
small extra PNs may be rarely observed. They may originate 
from assembly of one extra small nuclear compartment around 
one or more chromosomes of a diploid zygote (Currie et al., 2022). 
Specific TLT investigations are lacking. One study based on static 
observation and PGT-A monitored >3500 zygotes, among which 
only <1% (n¼ 27) were 2PN showing one small extra PN (referred 
to as 2.1PN zygotes) (Capalbo et al., 2017). Although these zygotes 
show reduced first cleavage rate (74%), they can develop into bi-
parental diploid blastocysts and produce apparently normal 
live births.

Consensus points

� Evidence reveals considerable plasticity of human fertiliza-
tion and provides the basis for updated recommendations 
relevant to static fertilization assessment. 

� Timing of observation. For static observations, assessment of 
PN number should be carried out at 16–17 hpi in both cIVF 
and ICSI cases, to minimize the probability that zygotes un-
dergoing relatively early PNBD are incorrectly classified as 
unfertilized oocytes. Checking for syngamy (disappearance of 
PN) by static observation, mentioned in the Istanbul 
Consensus (2011), is not recommended since timing of PNBD 
cannot be precisely determined. 

� Morphological features. Numerous zygotic attributes, including 
zygote size, PN size, PN position and NPB patterning, may be as-
sociated with embryo quality and clinical outcome. However, 
their use as biomarkers is hindered by at least two factors: (i) in-
sufficient evidence (e.g. PN size), and (ii) intrinsic morphological 
mutability during short time periods (NPB patterning) not ame-
nable to static observation. Lack of PN juxtaposition is very 
rare, but strongly associated with poor blastocyst development. 
The absence of the cytoplasmic halo affects blastocyst forma-
tion, but not implantation rate after blastocyst transfer. 
Therefore, the absence of the halo may be used to rank, but not 
de-select, embryos in Day-3 embryo transfers. 

� PN number. By static observation, pronuclei may not be seen 
at fertilization check, and yet normal embryo development 
can occur. This may be explained by TLT data, which show 
that a significant proportion of 2PN zygotes undergo PNBD at 
earlier times than the fertilization check interval recom-
mended by the original Istanbul Consensus (2011). In such 
cases, the presence of the PBII should accompany 2PN fertili-
zation and therefore be used as a scoring criterion. While 
these zygotes may be categorized as 0PN, if cultured, they 
may produce normal laboratory and clinical outcomes. 
Therefore, the term unfertilized or ‘0PN’ should not be used 
in these cases. Instead, ‘PN not observed’ may be a more suit-
able alternative for zygotes undergoing normal development 
without confirmation of fertilization. 

Preliminary PGT-A data suggest that a significant proportion 
of 1PN and, some 3PN zygotes may be biparental diploid. In addi-
tion, a growing number of studies have reported normal live 
births from 1PN zygotes derived from both ICSI and IVF cycles. 
Collectively, this evidence supports cautious clinical use of 1PN 
zygotes, combining blastocyst culture and, if available, PGT-A 
technology appropriate for biparental diploidy assessment. The 
clinical use of 3PN zygotes is not recommended based on current 
evidence. 2PN zygotes with one extra micropronucleus (2.1PN) 
are relatively rare. However, they also may have a diploid 

genotype and lead to apparently normal live births. Their clinical 
use may be considered, especially if associated with PGT-A tech-
nology. In general, the possible clinical use of 1PN and 2.1PN 
zygotes should be discussed with the clinical team and the pa-
tient, and governed by an internally approved policy.

4. Cleavage stage
Assessment of embryos at predefined times on Days 1, 2 and 3 
has shown number of cells, fragmentation grade, blastomere 
size, and multinucleation to correlate with pregnancy and live 
birth outcomes (Lundin and Ahlstr€om, 2015).

The survey results indicate that the vast majority of clinics 
(95%) still perform early-stage embryo evaluations. However, the 
traditionally static ‘snapshot’ assessments once or twice per day 
implies that no information regarding the development between 
these time points is obtained. Therefore, significant events such 
as abnormal cell divisions may be missed. Also, it has been 
shown that the morphology of an embryo may change in a cou-
ple of hours, for a better or a worse score (Montag et al., 2011), 
one reason being the dynamic occurrence and reabsorption of 
fragments during the cleavage process (Hardarson et al., 2001).

This section discusses morphological and morphokinetic 
attributes assessed at the early embryo cleavage stages and their 
potential impact on success rates for an embryo transferred or 
cryopreserved on Day 2 or Day 3 post fertilization (Table 4). It is 
important to consider that the same attributes may not be rele-
vant or may have a different impact if the embryo survives ex-
tended culture and is transferred, fresh or after cryopreservation, 
at the blastocyst stage.

Timing of cleavage-stage embryo assessment
The Istanbul Consensus (2011) recommended static observation 
performed at 44 ± 1 hpi for Day-2 embryos and 68 ± 1 hpi for Day- 
3 embryos. The survey results showed that 41% and 63% of the 
respondents always assessed embryos on Day 2 or Day 3, respec-
tively, applying these recommendations (Supplementary Data 
SII, Fig. 3A).

Assessment by TLT permits more detailed analysis of the tra-
ditional morphological parameters over time, as well as the inci-
dence of abnormal cleavages. Several early, retrospective, TLT 
studies found that morphokinetic variables such as the timing of 
the first cell division, as well as the lengths of cell cycles, corre-
lated with further embryonic development and subsequent preg-
nancy outcomes (Meseguer et al., 2011; Dal Canto et al., 2012b; 
Herrero et al., 2013). However, recent RCTs and meta-analyses 
have not found improvement in live birth rates following embryo 
selection using TLT algorithms (Armstrong et al., 2019; Ahlstr€om 
et al., 2022; Kieslinger et al., 2023).

More recent TLT studies have shown timings with slight devi-
ations from those reported in the Istanbul Consensus (2011), the 
differences becoming more pronounced and varied from the 4- 
cell stage onwards (Table 1).

Timing of first cleavage

The single most important indicator of embryo viability is cellu-
lar division. The occurrence of early cleavage, i.e. the first cell di-
vision occurring before 25–27 hpi, has been shown to correlate 
positively with embryo quality on Day 2 and Day 3, blastocyst 
formation rate (Herrero et al., 2013; de los Santos et al., 2014; 
Milewski et al., 2015), and implantation and live birth rates after 
transfer on Day 2 or 3 (Lundin et al., 2001; Salumets et al., 2003). 
This is also more recently supported by TLT studies (Coticchio 
et al., 2018; Sayed et al., 2020). In addition, TLT has shown that 
the time from disappearance of pronuclei or pronuclei fading 
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(PNf) to the start of the first cytokinesis was significantly related 
to ploidy (Vera-Rodriguez et al., 2015). A retrospective analysis of 
Day-2 single embryo transfers of ICSI embryos (n¼ 207), includ-
ing both traditional morphology variables as well as morphoki-
netic variables and patient characteristics, showed early 
cleavage, measured as more than one cell at 25–27 hpi, to be a 
significant predictor of live birth (OR 4.84, CI 2.14–10.96, 
P¼ 0.0002) (Ahlstrom et al., 2016). In addition, it was found that 
each increase in grade of fragmentation (to 5–10%, 11–20%, 21– 
50%, 51–100%) significantly decreased the probability for live 
birth (OR 0.46, CI 0.25–0.84, P¼0.012).

The same study also found that, for Day-2 transfers, early 
cleavage and fragmentation grade were better predictors of live 
birth outcome when compared with morphokinetic variables, 
and that no morphokinetic variables up to Day 2 improved pre-
diction of live birth further (Ahlstrom et al., 2016). However, other 
studies have not found any correlation between early cleavage 
and implantation or live birth (Thurin et al., 2005; Sundstr€om and 
Saldeen, 2008; de los Santos et al., 2014; Yang et al., 2015), and the 
data on potential importance of scoring early cleavage are cur-
rently inconclusive.

Still, the assessment of early cleavage in a TLT system can be 
used to select against abnormal early cleavages such as direct 
cleavage, reverse cleavage and irregular chaotic division, which 
have been shown to be associated with lower blastocyst forma-
tion rates, implantation and live birth rates (Meseguer et al., 2011; 
Petersen et al., 2016; Zhan et al., 2016; Liu et al., 2020) as well as 
with aneuploidy (Arroyo et al., 2015; Yan et al., 2015; Desai et al., 
2018) and multinucleation (Zhan et al., 2016). In a study by Barrie 
et al., the prevalence of these abnormal cleavages was found to 
be 11.4% per cleaved embryo (Barrie et al., 2017b).

At present, the use of early cleavage/early syngamy in scoring 
regimens varies greatly between laboratories. An important as-
pect to consider is the difference between zygotes originating 
from ICSI and cIVF, as discussed in Section 1 (Expected timeline 
of embryo development and morphology) and Section 3 (Zygote 
stage assessment) of this paper.

Number of cells on Day 2 and Day 3
The number of blastomeres at a specific time signifies the devel-
opmental rate of the embryo and is considered the most impor-
tant parameter for embryo scoring (Machtinger and Racowsky, 
2013; Yu et al., 2018). Many earlier studies already showed the 
number of cells at Day 2 or Day 3 to be highly predictive of labo-
ratory and clinical outcomes (Giorgetti et al., 1995; Alikani et al., 
2000; Holte et al., 2007; Racowsky et al., 2011).

The Istanbul Consensus (2011) defined an optimal Day-2 em-
bryo (44 ± 1 hpi) as an embryo with 4 equally sized mononucle-
ated blastomeres in a three-dimensional tetrahedral 
arrangement, with <10% fragmentation, and a Day-3 embryo (68 
± 1 hpi) with 8 equally sized mononucleated blastomeres in a 
three-dimensional tetrahedral arrangement, with <10% frag-
mentation (Alpha Scientists in Reproductive Medicine and ESHRE 
Special Interest Group Embryology, 2011). The survey results 
showed that 68% of the respondents apply these Istanbul 
Consensus (2011) recommendations to score Day-2 and Day-3 
embryos (Supplementary Data SII, Fig. 3B).

There seems to exist an ‘optimal’ development speed and 
many publications throughout the years have reported that too 
fast or too slow embryo cleavage rate has a negative impact on 
embryo development (Edwards et al., 1980; Kroener et al., 2015; 
Shebl et al., 2021). For example, it has been shown that fast grow-
ing embryos on Day 3 (>8 cells) have a higher rate of aneuploidy 
and an increased incidence of abnormal cleavage patterns and 

are less likely to make blastocysts than 8-cell embryos (Kroener 
et al., 2015; Kong et al., 2016; Pons et al., 2019). However, once fast- 
growing embryos reach the blastocyst stage, their developmental 
potential is similar to 8-cell embryos (see also section ‘Blastocyst 
stage (days 4–7’). In contrast, concerning slow-developing em-
bryos (<4 cells on Day 2, <8 cells on Day 3), there is clear evi-
dence that these always perform worse and should only be used 
for transfer if better embryos are not available (Alikani et al., 
2000; Thurin et al., 2005; Scott et al., 2007). These observations 
have been confirmed by embryo assessment using TLT 
(Meseguer et al., 2011; Montag et al., 2011; Herrero et al., 2013; 
Milewski et al., 2015).

Several studies using static observation have found speed of de-
velopment to be predictive of live birth. In a prospective cohort 
study including 6252 Day-2 single embryo transfers, number of 
cells, the number of mononucleated cells per embryo and frag-
mentation rate were found to be significant predictors of live birth, 
with 4 cells and low (<10%) fragmentation having the highest live 
birth rate (Rhenman et al., 2015). In the most recent analysis of 
SART data including 28 878 fresh Day-3 embryo transfers, it was 
shown that for women at 34 years of age, the highest live birth 
rates were found after transfer of 8-cell embryos (24%), followed 
by >8 cell (23%), 7-cell (17%), 6-cell (8%), 5-cell (5%), and 4-cell (1%) 
embryos (Awadalla et al., 2022a). The 8-cell embryos with low de-
gree of fragmentation (<10%) showed higher live birth rate com-
pared to embryos with more than 10% fragmentation.

In addition, when looking at available evidence it should be 
considered that cell numbers on a specific day may be impacted 
by culture conditions and timing of assessments. It may also be 
challenging at times to distinguish between a cell and a large 
fragment. Obviously, assessment of Day-2 and Day-3 embryos by 
TLT permits more exact assessment timings, as well as detailed 
analysis of the developmental parameters over time, and the in-
cidence of abnormal cleavages. For example, it is possible that 
some embryos with >8 cells on Day 3 are generated from trichot-
omous cleavages. This abnormal division can affect viability, but 
it is only detectable by TLT.

Fragmentation
A fragment can be defined as a membrane-bound extracellular 
cytoplasmic mass, often not including chromosomes. Fragments 
can vary in size and in distribution with different implications for 
the embryo (Alikani et al., 1999; Cecchele et al., 2022). The degree 
of fragmentation is difficult to evaluate, as it is first necessary to 
differentiate fragments from cells, and to consider the origin and 
to estimate the relative proportion of the embryo that is frag-
mented. One study found that a majority of blastomeres of 
<45 µm diameter in a Day-2 embryo and <40 µm diameter in a 
Day-3 embryo did not contain nuclei (Johansson et al., 2003). The 
impact of <10% fragmentation in Day-3 embryos on implanta-
tion rate has been found to be negligible (Alikani et al., 1999; 
Ebner et al., 2001; Van Royen et al., 2001; Holte et al., 2007; 
Racowsky et al., 2011), while, as discussed above, both earlier and 
several more recent and large studies, including TLT studies, 
have shown negative correlation with increasing fragmentation 
on live birth rates after early transfer (Rhenman et al., 2015; 
Ahlstrom et al., 2016; Awadalla et al., 2022b). Interestingly, a study 
by Ahlstrom et al., indicated that for Day-2 and Day-3 embryos, 
AI score correlated significantly with cell number and fragmenta-
tion score (Ahlstr€om et al., 2023).

In addition, a correlation has been shown between the degree 
of fragmentation and the incidence of aneuploidy (Munn�e et al., 
1995; Ziebe et al., 2003; Chavez et al., 2012).
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Uneven cleavage and cell size
Uneven cellular cleavage, leading to unequal relative cell size, is 
commonly found in human embryos in vitro (Puissant et al., 
1987). Unequal cell size has been defined as a 25% difference be-
tween the average diameter of the smallest cells compared to the 
average of the largest cells (Meseguer et al., 2011; Ziebe, 2013). 
Uneven cellular cleavage and its negative impact on pregnancy 
outcome for early transfer has been confirmed by several studies 
(Giorgetti et al., 1995; Ziebe et al., 1997; Hardarson et al., 2001; 
Racowsky et al., 2011), although some data are conflicting (Holte 
et al., 2007).

Interestingly, late-cleaving embryos have been reported to 
cleave more unevenly which, in turn, has been strongly corre-
lated with an increased incidence of chromosomal errors 
(Hardarson et al., 2001; Shenoy et al., 2021), possibly due to un-
even distribution of proteins, mRNA and mitochondria (Antczak 
and Van Blerkom, 1999).

It is important to consider that the relative cell sizes must be 
‘cell stage appropriate’, i.e. assessed in relation to the number of 
cycles that cells have gone through. This means that the sister 
blastomeres representing the same cell cycle should be equally 
sized, i.e. only at the 2-, 4-, and 8-cell stage should all the cells be 
of the same size.

Multinucleation
Multinucleation has been correlated with a higher degree of frag-
mentation and decreased number of blastomeres on Days 2 and 
3 (Van Royen et al., 2003), as well as with uneven cell size 
(Kligman et al., 1996; Hardarson et al., 2001; Sayed et al., 2022). 
The presence of multinucleation is generally considered abnor-
mal, however the reported incidence varies greatly. The term 
‘multinucleation’ can include different types of nucleation in one 
or more cells, including multiple (equally sized) nuclei, two nu-
clei (binucleation) and/or smaller size or micro nuclei (micronu-
cleation). Most studies have not differentiated clearly between 
the different types, or in how many of the cells the condition is 
present, which may be a reason for some conflicting reports. For 
example, one study reported that 43% of patients had one or 
more embryo with multinucleation at the 2-cell stage, defined as 
≥2 nuclei, which was reduced to 15% at the 4-cell stage (Balakier 
and Cadesky, 1997). Two other studies reported its occurrence in 
up to 87% of cycles, with 31–33% of the embryos affected at 
transfer (Jackson et al., 1998; Van Royen et al., 2003). Significantly 
slower development rates as well as lower implantation and live 
birth rates after early embryo transfer have been shown for em-
bryos with multinucleation on Day 2 compared to mononucle-
ated embryos (Ergin et al., 2014; Desch et al., 2017).

One recent TLT study, however, found that embryos that were 
binucleated at the 2-cell stage showed improved blastocyst for-
mation rates and implantation rates, both compared to ‘true’ 
multinucleated embryos (≥3) and non-multinucleated embryos 
(Talbot et al., 2022). This shows the importance of distinguishing 
between the different types of nucleation during embryo assess-
ment. Nucleation has shown to be a dynamic process, and the 
rate of multinucleation seen at the 2-cell stage is significantly re-
duced by the 4-cell stage (Aguilar et al., 2016; Balakier et al., 2016; 
Sayed et al., 2022; Talbot et al., 2022). It could also be that many of 
these embryos were binucleated but not ‘true’ multinucleated 
(≥3 nuclei) on Day 2, and should not be considered compromised, 
as discussed in the study by Talbot et al. (2022).

Evidence collected via TLT, where the cells can be scored in 
much more detail, has shown an incidence of 29–43% in multinu-
cleation in early (2-cell stage) embryos with a significant impact 

on implantation and live birth (Balakier et al., 2016; Goodman 
et al., 2016; Desch et al., 2017; Sayed et al., 2022). One study found 
an incidence of 6% multinucleated embryos with static scoring, 
compared to 23% using TLT (Ergin et al., 2014). Another study 
similarly found 7% and 35% using the two methods (Goodman 
et al., 2016).

In a further TLT study, it was shown that embryos with direct 
uneven cleavage or irregular chaotic divisions at the 2–5 cell 
stage showed a lower developmental potential. However, for 
those that did develop to the blastocyst stage, the presence of a 
single abnormality (multinucleation, reverse cleavage, irregular 
chaotic division, or direct uneven cleavage) at an early cell stage 
was not associated with aneuploidy when analysed at the blasto-
cyst stage (Desai et al., 2018), while the presence of two or more 
abnormalities increased the risk of aneuploidy.

Other morphological features of Day-2 and Day-3 embryos
There is no conclusive evidence that embryos with apparent spa-
tial disorganization, i.e. those that do not have the expected 
three-dimensional arrangement of blastomeres, should be con-
sidered abnormal (Ebner et al., 2012; Cauffman et al., 2014; Ebner 
et al., 2017; Desai and Gill, 2019).

Other morphological features, such as cytoplasmic granular-
ity, membrane appearance and the presence of vacuoles can also 
be scored as part of the morphological assessment of Day-2 and 
Day-3 embryos (Magli et al., 2012). It is important to understand 
that these features can vary within and between cohorts.

Initiation of compaction
Compaction usually starts at the 8- to 16-cell stage. To be more 
precise, compaction spans the phase between the point in time 
when any two blastomeres of the multicellular embryo start to 
compact and the moment prior to the onset of blastocoel forma-
tion (Ciray et al., 2014). One study showed that almost 90% of em-
bryos started compaction at the 8-cell stage or later (Iwata et al., 
2014). Of these, 50% developed into good quality blastocysts, 
while for embryos that initiated compaction before the 8-cell 
stage, <20% became good quality blastocysts. Several other stud-
ies showed that beginning compaction on Day 3 can be a positive 
feature (Alikani et al., 2000; Skiadas et al., 2006; Le Cruguel et al., 
2013; Aslan €Ozt€urk et al., 2022). It is noteworthy that compaction 
on Day 2 is atypical and of unknown biological significance.

Consensus points

� Cleavage-stage embryo assessment should include cell num-
ber, grade and reason for the grade (e.g. 4-cell, grade 2, frag-
mentation), as previously agreed in the Istanbul 
Consensus (2011). 

� Two-cell embryos on Day 1, 4-cell embryos on Day 2, and 8- 
cell embryos on Day 3, showing <10% fragmentation, mono-
nucleation, and stage-specific cell size, should be prioritized 
in case of cleavage stage transfer or cryopreservation. 

� There is no significant body of evidence to support an impact 
on implantation potential for cleavage stage embryos with 
atypical features such as spatial disorganization, vacuoles, 
cytoplasmic granularity, and zona abnormality, and these 
are therefore considered suitable for clinical use. However, 
extended culture of such embryos as a way of further selec-
tion for viability and evaluation should be considered. 

� Early cleavage: The importance of assessing early cleavage for 
prediction of success rates has not been conclusively estab-
lished. However, it may add information regarding other fea-
tures such as binucleation/multinucleation and cell size. 
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Assessment of early cleavage by TLT can be used to identify 
abnormal early cleavages such as direct cleavage, reverse 
cleavage and irregular chaotic division. 

� Fragmentation: The relative degree of fragmentation was de-
fined as: none or minimal (<10%), mild (<25%), or severe 
(>25%). The percent values are based on the cell equivalents, 
so for a 4-cell embryo, 25% fragmentation would equate to 
one blastomere in volume. 

� Numbers of blastomeres on Day 2/3: The current expected obser-
vation for embryo development is 4 cells on Day 2 and 8 cells 
on Day 3. However, this can be influenced by the exact time 
of observation and culture conditions. It is recommended 
that the time of assessment is documented. 

� Cell size: For embryos at the 2-, 4-, and 8-cell stages, blasto-
meres should be evenly sized. For all other cell stages, one 
would expect a cell stage appropriate size difference as the 
cleavage phase has not been completed. 

� Multinucleation: True multinucleation (≥3 nuclei in one or sev-
eral cells) is associated with decreased implantation potential 
and increased chromosome abnormality. Binucleation on 
Day 2, at the 4-cell stage, may not be necessarily a negative 
sign, but more evidence is needed. Laboratories should record 
the incidence and discriminate between binucleation, multi-
nucleation and micronucleation in each embryo, and ideally, 
the nucleation status of each blastomere in each embryo. If 
available, multinucleation should be assessed using TLT. 

� Time-lapse technology: Large datasets including timing of cer-
tain developmental events have been analysed to design 
algorithms to predict implantation and live birth. However, 
there is currently limited good quality evidence of better clin-
ical outcomes following TLT embryo selection (Armstrong 
et al., 2019; Kieslinger et al., 2023). TLT allow assessment of ki-
netic variables such as rapid cleavage, direct cleavage, and 
reverse cleavage. These data have been used for deselection 
of embryos and it has been demonstrated that certain atypi-
cal cleavage patterns such as direct cleavage to three cells 
negatively affect embryo development. These events would 
in most cases be missed with static observations. 

� Compaction: Based on a few studies, the start of compaction 
before 8 cells seems to negatively affect blastocyst formation, 
while compaction from 8 cells and onwards may be a positive 
indicator and could potentially be used as an additional se-
lection tool at this stage. 

Ranking cleavage-stage embryos
Different morphological features can reflect the overall quality of 
Day-2 and Day-3 embryos and the combination of those morpho-
logical features can be used to define a ranking order for transfer 

or cryopreservation of Day-2 and Day-3 embryos. A proposed 
ranking scheme for Day-2 and Day-3 embryos is presented 
in Table 5.

5. Morula stage
When using TLT, the term morula refers to the ‘end of the com-
paction process’ (Ciray et al., 2014). Due to the variation in devel-
opmental speed and cellular complexity, there is a lack of 
well-defined temporal and morphological markers of morula de-
velopment and viability for this stage (Coticchio et al., 2019). For 
an overview of all recommendations on morula stage assess-
ment, see Table 6.

Timing of morula assessment and scoring
Accordingly, a morula would be the expected developmental 
stage if embryo scoring is done on Day 4 at 92 ± 2 hpi as recom-
mended by the Istanbul Consensus (2011) (Alpha Scientists in 
Reproductive Medicine and ESHRE Special Interest Group 
Embryology, 2011).

The survey results showed that 24% of the respondents al-
ways apply the Istanbul Consensus (2011) recommendations re-
lated to the timing of assessment of Day-4 embryos 
(Supplementary Data SII, Fig. 3A).

However, TLT data have shown that there are considerable 
deviations in cleavage timings among a cohort of embryos of the 
same patient. At the extreme, a one-day delay or speed-up can 
be observed (Shebl et al., 2021), with neither scenario being neces-
sarily associated with a worse treatment outcome.

Morphological features to consider for morula assessment
The survey results showed that 28% of the respondents always 
apply the Istanbul Consensus (2011) scoring criteria to score Day- 
4 embryos (Supplementary Data SII, Fig. 3B).

Timing of cavitation

Early cavitation of morulae is a good prognostic parameter re-
lated to better quality blastocysts with a higher potential to im-
plant and higher ongoing pregnancy rates possibly due to a 
higher rate of euploidy (Hung et al., 2018). On the other hand, a 
delay in compaction and onset of cavitation was found to be as-
sociated with reduced blastocyst quality (Ivec et al., 2011; Desai 
et al., 2014) and reduced likelihood of live birth (Fishel et al., 2018).

Number of cells

Quality assessment at 92 ± 2 hpi usually takes both cell number 
and degree of compaction into consideration (Alikani et al., 2000; 
Tao et al., 2002; Feil et al., 2008; Ebner et al., 2009; Fabozzi et al., 
2016). It has been found that the more cells and in particular the 

Table 5. Ranking Scheme for Day-2 and Day-3 embryo transfer.

Feature Top ranking Intermediate ranking Low ranking

Number of cells 4 cells on Day 2 >4 cells on Day 2 <4 cells on Day 2
or or or
8 cells on Day 3 >8 cells on Day 3 <8 cells on Day 3

Early cleavage Early cleavage No early cleavage
Cell size Cell stage specific Not cell stage specific
Fragmentation None or minimal fragmentation (<10%) 10–25% fragmentation >25% fragmentation
Multinucleation No multinucleation at any cell stage No multinucleation at 4 cell stage Multinucleated at 4-cell stage
Abnormal cleavage – – Direct cleavage DC2 (2- to 5-cell)
Compaction Compaction from ≥8-cell stage No compaction Compaction before 8-cell stage
Recommendation � De-prioritize Day 2/3 embryos with abnormal cleavage: direct cleavage DC1 (1- to 3-cell),  

irregular chaotic division or reverse cleavage, for transfer. 
� Extend culture of embryos with abnormal cleavage to blastocyst stage. 

A revised ESHRE/ALPHA consensus on oocyte and embryo morphology assessment | 21  

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/deaf021#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/deaf021#supplementary-data


T
ab

le
 6

. O
ve

rv
ie

w
 o

f 
al

l e
vi

d
en

ce
 a

n
d

 r
ec

om
m

en
d

at
io

n
s 

fo
r 

m
or

u
la

 s
ta

ge
/D

ay
-4

 e
m

b
ry

o 
as

se
ss

m
en

t.

S
u

m
m

ar
y 

of
 r

ev
ie

w
 fi

n
d

in
gs

C
on

si
d

er
at

io
n

s
R

ec
om

m
en

d
at

io
n

Fe
at

u
re

A
ty

p
ic

al
 p

at
te

rn
s

Em
b

ry
o 

q
u

al
it

y 
an

d
 

d
ev

el
op

m
en

t 
p

ot
en

ti
al

Pl
oi

d
y

Im
p

la
n

ta
ti

on
 r

at
e

Li
ve

 b
ir

th
 r

at
e

T
im

in
g 

of
 c

av
it

at
io

n
Ea

rl
y 

ca
vi

ta
ti

on
N

/R
A

ss
oc

ia
ti

on
 w

it
h

 
h

ig
h

er
 e

u
-

p
lo

id
y 

ra
te

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
(H

u
n

g 
et

 a
l.,

 2
01

8)
 

A
ss

oc
ia

ti
on

 w
it

h
 

h
ig

h
er

 im
p

la
n

ta
-

ti
on

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(H
u

n
g 

et
 a

l.,
 

20
18

; R
ie

n
zi

 
et

 a
l.,

 2
01

9)
 

A
ss

oc
ia

ti
on

 w
it

h
 

h
ig

h
er

 o
n

go
in

g 
p

re
gn

an
cy

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(H
u

n
g 

et
 a

l.,
 

20
18

; R
ie

n
zi

 
et

 a
l.,

 2
01

9)
 

S
im

il
ar

 c
li

n
ic

al
 p

re
gn

an
cy

 
an

d
 li

ve
 b

ir
th

 r
at

es
 

w
er

e 
ac

h
ie

ve
d

 w
h

en
 

tr
an

sf
er

ri
n

g 
m

or
u

la
e 

on
 D

ay
 5

 r
at

h
er

 t
h

an
 

w
ai

ti
n

g 
fo

r 
D

ay
 6

 b
la

s-
to

cy
st

 fo
rm

at
io

n

D
ay

-4
 e

m
b

ry
os

 s
h

ow
in

g 
fu

ll
 c

om
p

ac
ti

on
 o

r 
ea

rl
y 

ca
vi

ta
ti

on
 s

h
ou

ld
 b

e 
p

ri
or

it
iz

ed
 in

 c
as

e 
of

 
D

ay
-4

 t
ra

n
sf

er
 o

r 
cr

yo
-

p
re

se
rv

at
io

n
.

D
el

ay
 in

 c
om

p
ac

ti
on

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

o-
cy

st
 q

u
al

it
y 

V
er

y 
lo

w
 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(I
ve

c 
et

 a
l.,

 2
01

1;
 

D
es

ai
 e

t 
al

., 
20

14
) 

C
on

tr
ad

ic
to

ry
 

re
su

lt
s:

 
N

o 
cl

ea
r 

as
so

ci
at

io
n

 
w

it
h

 a
n

eu
-

p
lo

id
y 

ra
te

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
(M

in
as

i 
et

 a
l.,

 2
01

6)
 

A
ss

oc
ia

ti
on

 w
it

h
 

h
ig

h
er

 e
u

-
p

lo
id

y 
ra

te
 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
(C

am
p

b
el

l 
et

 a
l.,

 2
01

3)
 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 im

p
la

n
ta

-
ti

on
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
(M

on
tj

ea
n

 e
t 

al
., 

20
21

) 

N
o 

cl
ea

r 
as

so
ci

at
io

n
 

w
it

h
 li

ve
 b

ir
th

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
(M

on
tj

ea
n

 e
t 

al
., 

20
21

) 

N
u

m
b

er
 o

f 
ce

ll
s

M
or

e 
co

m
p

ac
ti

n
g 

ce
ll

s 
on

 D
ay

 4
C

or
re

la
ti

on
 w

it
h

 
b

la
st

oc
ys

t 
fo

rm
a-

ti
on

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(E
b

n
er

 e
t 

al
., 

20
09

; I
w

at
a 

et
 a

l.,
 2

01
4)

 

N
/R

N
/R

N
/R

A
cc

u
ra

te
 e

va
lu

at
io

n
 o

f 
ce

ll
 n

u
m

b
er

 is
 im

p
os

si
-

b
le

 o
n

ce
 t

h
e 

m
aj

or
it

y 
of

 
b

la
st

om
er

es
 is

 in
vo

lv
ed

 
in

 t
h

e 
co

m
p

ac
ti

n
g 

m
as

s,
 a

n
d

 t
h

e 
fo

cu
s 

is
 

p
la

ce
d

 o
n

 t
h

e 
p

ro
p

or
-

ti
on

 o
f 

ce
ll

s 
in

vo
lv

ed
 

in
 c

om
p

ac
ti

on
.

D
eg

re
e 

of
 c

om
p

ac
ti

on
Pa

rt
ly

 c
om

-
p

ac
te

d
 e

m
b

ry
os

 
(e

x
ce

ss
iv

e 
fr

ag
m

en
-

ta
ti

on
, l

ar
ge

 n
u

m
-

b
er

 o
f 

ex
cl

u
d

ed
 

ce
ll

s,
 s

el
f-

ca
vi

ta
-

ti
on

 o
f 

b
la

st
om

er
es

) 

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

oc
ys

t 
fo

rm
at

io
n

 r
at

e 
an

d
 

b
la

st
oc

ys
t 

q
u

al
it

y 
Lo

w
 �

�
�
�

5 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(A
li

ka
n

i e
t 

al
., 

20
00

; E
b

n
er

 e
t 

al
., 

20
09

; L
ag

al
la

 e
t 

al
., 

20
17

; C
ot

ic
ch

io
 

N
/R

N
/R

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 li

ve
 

b
ir

th
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(C
ot

ic
ch

io
 

et
 a

l.,
 2

02
1)

 

H
ig

h
ly

 d
yn

am
ic

 b
io

lo
gi

ca
l 

p
ro

ce
ss

es
 s

u
ch

 a
s 

co
m

-
p

ac
ti

on
 a

n
d

 b
la

st
u

la
-

ti
on

 w
er

e 
d

ef
er

re
d

 in
 

p
ar

tl
y 

co
m

-
p

ac
te

d
 e

m
b

ry
os

Em
b

ry
os

 w
it

h
 p

ar
ti

al
 

co
m

p
ac

ti
on

 c
an

 fo
rm

 
b

la
st

oc
ys

ts
 a

n
d

 s
h

ou
ld

 
b

e 
co

n
si

d
er

ed
 fo

r 
cl

in
i-

ca
l u

se
. 

Ex
te

n
d

ed
 c

u
lt

u
re

 o
f t

h
es

e 
em

b
ry

os
 fo

r 
fu

rt
h

er
 

ev
al

u
at

io
n

 s
h

ou
ld

 
b

e 
co

n
si

d
er

ed
. (c
on

ti
n

u
ed

)

22 | The Working Group on the update of the ESHRE/ALPHA Istanbul Consensus et al.  



T
ab

le
 6

. 
C

on
ti

n
u

ed

S
u

m
m

ar
y 

of
 r

ev
ie

w
 fi

n
d

in
gs

C
on

si
d

er
at

io
n

s
R

ec
om

m
en

d
at

io
n

Fe
at

u
re

A
ty

p
ic

al
 p

at
te

rn
s

Em
b

ry
o 

q
u

al
it

y 
an

d
 

d
ev

el
op

m
en

t 
p

ot
en

ti
al

Pl
oi

d
y

Im
p

la
n

ta
ti

on
 r

at
e

Li
ve

 b
ir

th
 r

at
e

et
 a

l.,
 2

02
1;

 P
ar

ri
eg

o 
et

 a
l.,

 2
02

4)
 

V
ac

u
ol

iz
at

io
n

V
ac

u
ol

e 
fo

rm
at

io
n

 
ar

ou
n

d
 

co
m

p
ac

ti
on

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 b

la
st

oc
ys

t 
fo

rm
at

io
n

 r
at

e 
an

d
 

b
la

st
oc

ys
t 

q
u

al
it

y 
V

er
y 

lo
w

 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(M
ay

er
 e

t 
al

., 
20

18
; C

h
en

 
et

 a
l.,

 2
01

9)
 

N
/R

N
/R

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 o

n
go

in
g 

p
re

gn
an

cy
 r

at
e 

an
d

 li
ve

 b
ir

th
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(F
ei

l e
t 

al
., 

20
08

; 
M

ay
er

 e
t 

al
., 

20
18

) 

N
o 

co
rr

el
at

io
n

 h
as

 b
ee

n
 

fo
u

n
d

 b
et

w
ee

n
 t

h
e 

oc
-

cu
rr

en
ce

 o
f v

ac
u

ol
es

 
an

d
 p

at
ie

n
t 

p
ar

am
et

er
s 

li
k

e 
ag

e 
or

 b
as

el
in

e 
h

or
-

m
on

al
 p

ro
fi

le

S
p

on
ta

n
eo

u
s 

va
cu

ol
e 

fo
r-

m
at

io
n

 a
ro

u
n

d
 c

om
-

p
ac

ti
on

 w
as

 fo
u

n
d

 t
o 

b
e 

a 
n

eg
at

iv
e 

p
re

d
ic

to
r 

fo
r 

em
b

ry
o 

d
ev

el
op

m
en

t.

C
om

p
ac

ti
on

 o
f 

va
cu

ol
iz

ed
 

b
la

st
om

er
es

A
ss

oc
ia

ti
on

 w
it

h
 

h
ig

h
er

 m
os

ai
-

ci
sm

 r
at

e 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
 (C

h
en

 
et

 a
l.,

 2
01

9)
 

C
le

av
ag

e 
d

yn
am

ic
s

B
la

st
om

er
e 

ex
cl

u
si

on
/ 

ex
tr

u
si

on
 

N
/R

C
on

tr
ad

ic
to

ry
 

re
su

lt
s:

 
H

ig
h

er
 a

n
eu

p
lo

id
y 

in
 e

x
cl

u
d

ed
 c

el
ls

 
V

er
y 

lo
w

 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
(L

ag
al

la
 

et
 a

l.,
 2

01
7)

 
Pl

oi
d

y 
co

rr
el

at
io

n
 

w
it

h
 e

x
-

cl
u

d
ed

 c
el

ls
 

V
er

y 
lo

w
 �
�
�
�

1 
ob

se
rv

at
io

n
al

 
st

u
d

y 
(P

ar
ri

eg
o 

et
 a

l.,
 2

02
4)

 

N
/R

A
ss

oc
ia

ti
on

 w
it

h
 

lo
w

er
 li

ve
 

b
ir

th
 r

at
e 

V
er

y 
lo

w
 �
�
�
�

2 
ob

se
rv

at
io

n
al

 s
tu

d
-

ie
s 

(C
ot

ic
ch

io
 e

t 
al

., 
20

21
; H

u
r 

et
 a

l.,
 2

02
3)

 

B
la

st
om

er
e 

ex
cl

u
si

on
/e

x
-

tr
u

si
on

 a
t 

m
or

u
la

e 
st

ag
e 

is
 li

k
el

y 
to

 b
e 

as
-

so
ci

at
ed

 w
it

h
 a

b
n

or
-

m
al

it
ie

s 
in

 t
h

e 
el

im
in

at
ed

 c
el

ls
.

N
or

m
al

ly
 c

le
av

in
g 

em
-

b
ry

os
 r

es
u

lt
 in

 e
u

p
lo

id
 

b
la

st
oc

ys
ts

 le
ss

 fr
e-

q
u

en
tl

y 
th

an
 t

h
ei

r 
ir

-
re

gu
la

r 
cl

ea
vi

n
g 

co
u

n
te

rp
ar

ts
.

N
/R

, n
ot

 r
ep

or
te

d
.

T
ab

le
 c

ol
ou

r 
co

d
e:

 G
re

en
: t

h
e 

em
b

ry
o 

ca
n

 b
e 

cl
in

ic
al

ly
 u

se
d

; Y
el

lo
w

: t
h

e 
em

b
ry

o 
co

u
ld

 b
e 

u
se

d
 w

it
h

 c
au

ti
on

ar
y 

co
n

si
d

er
at

io
n

s.
 R

ed
: t

h
e 

em
b

ry
o 

is
 n

ot
 c

on
si

d
er

ed
 s

u
it

ab
le

 f
or

 c
li

n
ic

al
 u

se
.

A revised ESHRE/ALPHA consensus on oocyte and embryo morphology assessment | 23  



more compacting cells a Day-4 embryo shows the better its 
chance of forming a blastocyst on Day 5 (Ebner et al., 2009; Iwata 
et al., 2014).

Since accurate evaluation of cell number is impossible once 
the majority of blastomeres is involved in the compacting mass, 
focus is placed on the proportion of cells involved in compaction. 
In principle, partly (PCM) and fully (FCM) compacted morulae 
can be distinguished. The former group is characterized by a cer-
tain loss of embryonic mass either due to extensive cytoplasmic 
fragmentation or blastomere elimination. If the observed loss is 
substantial, further development to blastocyst (Alikani et al., 
2000; Ebner et al., 2009; Lagalla et al., 2017; Coticchio et al., 2021) 
and formation of good quality blastocysts (Ebner et al., 2009; 
Coticchio et al., 2021) will be affected, both of which could be as-
sociated with a lower live birth rate (Coticchio et al., 2021).

Other morphological features

Beyond the degree of compaction, some studies have also consid-
ered detrimental morphological features such as: excessive frag-
mentation, multiple excluded cells, ‘self-cavitation’ of 
blastomeres and vacuolization for morphological assessment of 
Day-4 embryos (Alikani et al., 2000; Feil et al., 2008; Ivec et al., 
2011; Fabozzi et al., 2016). Of note, the first three abnormalities 
would reflect PCM, which implies that vacuolization is the only 
abnormality that could be taken into consideration for quality as-
sessment purposes. Indeed, spontaneous vacuole formation 
around the time of compaction was found to be a negative pre-
dictor of blastulation and top-quality blastocyst formation rates 
(Mayer et al., 2018; Chen et al., 2019), ongoing pregnancy rates 
(Feil et al., 2008; Mayer et al., 2018) and live birth rates (Mayer 
et al., 2018).

Recent TLT studies further shed some light on the phenome-
non of blastomere loss around the morula stage (Lagalla et al., 
2020; Coticchio et al., 2021). Two types of cleavage dynamics were 
identified, both of which were responsible for the elimination of 
blastomeres but differed in timing. One was the exclusion of 
blastomeres from the outset and the other was characterized by 
the extrusion of cells after full compaction had already occurred. 
The occurrence of the two phenomena together had the worst 
prognosis for live birth (Coticchio et al., 2021; Hur et al., 2023).

Blastomere exclusion/extrusion at morula stage is likely to be 
associated with abnormalities in the eliminated cells. It has been 
shown that excluded cells show E-cadherin (a key cell adhesion 
protein) expression profiles that are different from the expected 
membrane-localized pattern (Alikani, 2005). The degree to which 
failed compaction or blastomere loss (Zhu et al., 2021) at compac-
tion reflects perturbations in key events in compaction and cell 
polarization of the morula (e.g. apical F-actin and PAR complex 
accumulation) remained speculative until recently, when it be-
came evident that contractile forces of cells play a key role in the 
compaction process. The fact that embryos that fail to compact 
or exclude cells exhibit lower surface tension suggests that weak 
cell contractility is the causative phenomenon (Firmin et al., 
2024). In relation to partial compaction, other studies reported 
‘abnormal divisional behaviour’ such as karyokinesis without cy-
tokinesis or signs of degeneration (Zhan et al., 2016). The appear-
ance of apoptotic nuclei following compaction further suggests 
that programmed cell death may play a role in eliminating af-
fected blastomeres (Chatzimeletiou et al., 2005).

A more detailed annotation of the TLT sequences revealed 
that in comparison to FCM all patterns of PCM not only show a 
higher rate of irregular and asymmetric cleavage (Coticchio et al., 
2021) but also an evident delay in development starting with 

pronuclear fading (Lagalla et al., 2020; Coticchio et al., 2021; Hur 
et al., 2023). In particular, highly dynamic biological processes 
such as compaction and blastulation were deferred (Lagalla et al., 
2020; Coticchio et al., 2021; Ezoe et al., 2023).

A hierarchical classification model has found morula forma-
tion (tM) within an optimal range (81.3–96.0 hpi) to be one of the 
strongest predictors of blastocyst formation (Motato et al., 2016). 
Similarly, a multivariate analysis has shown that tM was the 
only morphokinetic parameter that correlated with live birth rate 
after euploid blastocyst transfer (Rienzi et al., 2019).

While some studies showed no correlation between tM or 
starting blastulation (tSB) and aneuploidy (Minasi et al., 2016) 
others found a delayed initiation of compaction (tSC) in complex 
aneuploid embryos (Campbell et al., 2013).

There is evidence that PCM following irregular cleavages can 
develop into euploid blastocysts (Zhan et al., 2016; Lagalla et al., 
2017). Those cells excluded from the morulae were shown to 
have a high rate of aneuploidy and degraded DNA (Lagalla et al., 
2017). This, together with reduced aneuploidy rate in biopsied TE 
cells of the associated blastocyst, suggests that a self-check 
mechanism may reduce the relative abundance of aneu-
ploid cells.

On the other hand, a recent study showed a high ploidy corre-
lation between excluded cells and TE cells, suggesting that cell 
exclusion might be a consequence of compromised embryo de-
velopment regardless the chromosomal constitution of excluded 
cells (Parriego et al., 2024).

Consensus points

� Day-4 embryos showing full compaction or early cavitation 
should be prioritized in case of Day-4 transfer or vitrification. 

� Embryos with partial compaction can form blastocysts and 
should be considered for clinical use. Extended culture of 
these embryos for further evaluation should be considered. 

A proposed ranking scheme for morulae is presented 
in Table 7.

6. Blastocyst stage (Days 4–7)
Embryo culture to the blastocyst stage is routine in clinical em-
bryology encompassing Days 4 to 7 and represents a significant 
shift in practice since the Istanbul Consensus was first published 
in 2011.

The survey results indicate that only 27% of the respondents 
follow the Istanbul Consensus (2011) recommendations on the 
timing and criteria for scoring blastocysts. The Gardner grading 
system (Gardner and Schoolcraft, 1999), remains the most com-
mon scheme utilized clinically, according to the survey results 
(63% of respondents) (Supplementary Data SII, Fig. 1D). Re- 
evaluation and modification of the Gardner grading system was 
to be expected and this has indeed occurred (Veeck and 
Zaninovic, 2003; Cuevas Saiz et al., 2018; Hammond et al., 2020; 
Pierson et al., 2023), and 30% of respondents indicated using an 
additional grade (either ‘D’ or ‘X’) or the term ‘non-classifiable’ to 
denote blastocysts considered unsuitable for clinical use.

AI has been applied to both consecutive images of embryo de-
velopment obtained through time-lapse (Khosravi et al., 2019; 
Tran et al., 2019; Berntsen et al., 2022; Illingworth et al., 2024), and 
to static images of blastocysts (Bormann et al., 2020; Chavez- 
Badiola et al., 2020; Diakiw et al., 2022), in an attempt to improve 
the ability to identify the most viable embryo in a cohort, while 
reducing the intra- and inter-operator variation associated with 
subjective evaluation of blastocysts using the grading systems 
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discussed. Interestingly, a recent paper by Ezoe et al., indicated 
that AI score was tightly coupled to the morphological aspects of 
the Gardner grading system (Ezoe et al., 2022b). AI holds great 
promise to augment embryologist assessment of the blastocyst 
(Fitz et al., 2021; Sawada et al., 2021), but should not yet be consid-
ered as a replacement for conventional assessment (Illingworth 
et al., 2024). The survey results showed that only 14% of the 
respondents make use of AI mainly for embryo assessment in TL 
videos (in 71% of cases) (Supplementary Data SII, Fig. 6C).

For an overview of all recommendations on blastocyst assess-
ment, see Table 8.

Timing of blastocyst scoring
The recommended timing by the Istanbul Consensus (2011) for 
static observation of Day-5 embryos is 116 h ± 2 hpi (Alpha 
Scientists in Reproductive Medicine and ESHRE Special Interest 
Group Embryology, 2011). However, formation and expansion of 
a blastocoel cavity in embryos leading to a live birth occurs over 
a wide timeframe, from as early as Day 4 (98.4 ± 0.4 hpi) to the 
‘typical’ timing of Day 5 (112.4 ± 0.1 hpi) or delayed until Day 6 
(131.6 ± 0.1 hpi) or Day 7 (151.2 ± 0.5 hpi) (Coticchio et al., 2023). 
Maintaining a standardized window for embryo assessment can 
be beneficial for benchmarking, establishing and monitoring 
KPIs, although this should be balanced against workflow needs, 
particularly when TLT is not available (Figure 1). In terms of tim-
ing of assessment, even if daily assessment timings cannot be 
consistent, blastocysts within a cohort can be compared for de-
velopmental stage as well as morphology to aid selection, while 
being mindful of reports that faster developing embryos, at each 
stage of development, have greater potential for implantation 
and birth, than their slower counterparts (Campbell et al., 2022b).

Morphological features to consider for 
blastocyst assessment
Day of blastocyst formation

Developmental speed is directly correlated with blastocyst viabil-
ity: slower growing blastocysts have lower implantation rates 
(Shebl et al., 2021). While blastocysts developing according to the 
expected timeline have high implantation rates when transferred 
during a fresh cycle (Shebl et al., 2021), slow growing blastocysts 

may miss the window of implantation, a problem that is partially 
alleviated with blastocyst vitrification and transfer in a frozen cy-
cle (Day 5 vs Day 6, RR 1.74 (95% CI 1.37–2.20) for fresh transfer 
and 1.38 (95% CI 1.23–1.56) for frozen embryo transfer (FET)) 
(Bourdon et al., 2019), particularly for Day-6 blastocysts that were 
at the morula stage on Day 5 (Tannus et al., 2019). Day-4 blasto-
cysts, although rare, display a very high implantation rate in FET 
cycles (Coticchio et al., 2023).

Live birth rates for untested blastocysts frozen on Day 6 are 
lower than those frozen on Day 5 (Bourdon et al., 2019; 
Yerushalmi et al., 2021; Coticchio et al., 2023); and this difference 
persists with the transfer of euploid blastocysts (Tiegs et al., 2019; 
Zhan et al., 2020; Cimadomo et al., 2022b; Lane et al., 2022). Day-7 
blastocysts, which may represent 5–10% of all useable blasto-
cysts (Hammond et al., 2018), have higher rates of aneuploidy 
and lower implantation rates compared to Day-5 and Day-6 eu-
ploid blastocysts (Tiegs et al., 2019; Cimadomo et al., 2022b; Lane 
et al., 2022). Nonetheless, healthy live births can be obtained with 
Day-7 blastocysts and these embryos may be of particular impor-
tance for patients with few embryos available (Du et al., 2018) or 
with advanced maternal age (Abdala et al., 2023). Survey results 
indicated that a small minority (16%) of the respondents perform 
some fresh Day-7 blastocyst transfers, while most others (49%) 
transfer Day-7 blastocysts in frozen embryo transfer cycles.

Degree of expansion and ICM/TE grade

Implantation potential according to the Istanbul Consensus 
(2011) scoring system is related to expansion stage and ICM/TE 
grade, though the relative importance of each remains to be fully 
resolved. The difference between ICM/TE grades A and B appears 
marginal, whereas grade C is considered non-useable by 44% of 
respondents. The remaining respondents use a modified Gardner 
grade or the term ‘non-classifiable’ and consider blastocysts with 
grade C ICM or TE as useable. This marked difference in clinical 
practice indicates lack of consensus, an observation further sup-
ported by the finding that 8 of 10 respondents indicated that a 
universally accepted term for non-useable blastocysts is needed.

Fresh untested blastocyst transfers represent a significant 
proportion of treatment cycles and have helped establish the rel-
ative importance of blastocyst characteristics. Multivariate 

Table 7. Ranking for selection of morulae with similar hours post-insemination (hpi).
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analysis accounting for expansion stage, ICM grade and TE grade 
shows that grade of TE is the strongest predictor of live birth 
(Ahlstr€om et al., 2011; Hill et al., 2013; Thompson et al., 2013; 
Ebner et al., 2016; Bakkensen et al., 2019; Pons et al., 2023), fol-
lowed by degree of expansion (Thompson et al., 2013; Du et al., 
2016; Subira et al., 2016; Bakkensen et al., 2019). Few blastocysts 
with grade ‘C’ ICM or TE were included in these studies; notably 
one study found Grade ‘C’ ICM was associated with lower live 
birth rate (Subira et al., 2016). In general, expanded blastocysts 
with higher grade TE are associated with higher live birth rates in 
fresh transfers (Zou et al., 2023). Similarly, in a multivariate 
analysis of over 2000 fresh blastocyst transfers, one study 
showed that both expansion stage and TE grade were associated 
with the probability of live birth (Storr et al., 2019). The impact of 
ICM grade on outcome is less clear. While ICM grade may be as-
sociated with pregnancy loss (Van den Abbeel et al., 2013), and 
birthweight (Licciardi et al., 2015), further evidence is needed to 
establish definitive links. Blastocysts showing marked signs of 

degeneration or without clearly discernible ICM may sporadically 
produce live births, but pertinent evidence is anecdotal (Kovacic 
et al., 2004).

Predictive features of untested fresh and frozen blastocysts 
compare favourably. TE grade was the most common variable as-
sociated with live birth from frozen blastocysts (Honnma et al., 
2012; Ahlstr€om et al., 2013; Chen et al., 2014), followed by expan-
sion stage (Ahlstr€om et al., 2013). None of these studies found an 
association between ICM grade and implantation, though similar 
to studies with fresh blastocysts, grade ‘C’ ICM was not well rep-
resented in frozen embryo transfer cycles. Of note and in con-
trast to fresh transfers where only Day-5 embryos were 
transferred, none of the studies controlled for day of blastocyst 
formation in the multivariate analysis, thus limiting their appli-
cability for using stage/grade when ranking slower growing 
blastocysts.

Though most studies have found that TE grade has the highest 
correlation with live birth, at least one multivariate analysis 

Figure 1. Time windows chart: this figure provides an example of suggested timings for assessment, to maximize the chance of observing the 
developing embryo at specific stages. In this example, IVF/ICSI is performed at 3:00 pm. hpi: hours post insemination.
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found that the grade of the ICM is the variable most commonly 
associated with implantation (Irani et al., 2017). However, most of 
the studies only found an association with grade ‘C’ ICM, not be-
tween grade ‘A’ and ‘B’ (Zhao et al., 2018; Nazem et al., 2019; 
Abdala et al., 2022; Zhang et al., 2022). Some of these studies also 
found an association with TE grade (Zhao et al., 2018; Nazem 
et al., 2019) and expansion stage (Abdala et al., 2022). A recent 
study developed a composite blastocyst score where day, expan-
sion stage, TE and ICM grades were all significantly associated 
with a clinical pregnancy, and blastocyst day had the largest im-
pact, followed by ICM grade, expansion and TE grade (Zhan et al., 
2020). It is acknowledged that while assessing the grade of the TE 
is relatively straight forward, assessing the ICM can be more 
problematic depending on its position and shape, and hence 
reflects the difficulties in differentiating between A and B grades 
of ICM in some blastocysts.

Early in the clinical application of blastocyst culture, a thresh-
old for blastocyst useability was set at Gardner 3BB when slow 
freezing and variable cryosurvival influenced the decision 
(Langley et al., 2001). Since the adoption of vitrification and PGT- 
A, several studies indicate that presumably low-grade blastocysts 
classified as low viability (e.g. grade C) can produce healthy live 
births, albeit at greatly reduced rates (Morbeck, 2017; Kemper et 
al., 2021). Similar to Day-7 blastocysts, these low-grade blasto-
cysts may be useful for patients with few available embryos 
(Cimadomo et al., 2022b). These changes to the definitions of us-
able blastocysts have raised important clinical and ethical ques-
tions: has the lower limit of viability been established and, if so, 
can these embryos be discarded where laws forbid destruction of 
human embryos? A framework for defining ‘developmentally in-
competent’ preimplantation embryos has been developed to ad-
dress this unique and important area of clinical practice 
(Cimadomo et al., 2021).

Abnormal chromosomal status

Human embryos with abnormal chromosomal status can de-
velop as evidenced by the fact that specific trisomies are compat-
ible with the formation of high scoring blastocysts, and some, 
such as trisomy 21, can go to term (Forman et al., 2013; Savio 
Figueira Rde et al., 2015). Importantly, blastocysts with abnormal 
chromosomal status will exhibit cellular stress, through which 
their transcriptome, proteome and metabolome will be affected, 
thereby compromising their physiology and development.

A relationship between blastocyst morphology and aneu-
ploidy following TE biopsy was initially inferred by a retrospec-
tive observational study (Capalbo et al., 2014), which determined 
an incidence of aneuploidy of 6.8%, 15.2%, 17.4%, and 27.5% in 
excellent, good, average, and poor quality embryos, respectively, 
in women >35 years old. Significantly, in blastocysts where both 
ICM and TE were abnormal, there was a doubling in the fre-
quency of aneuploidy. Another case series study with analysis of 
1730 embryos reported that euploid blastocysts were character-
ized with high scoring ICM and TE, as well as a high degree of ex-
pansion, and a shorter time to the initiation of blastocoel 
formation (Minasi et al., 2016). Similarly, an analysis of 3573 blas-
tocysts showed that euploidy was correlated with the Gardner 
grade but did not report the relative contributions of the grading 
to ploidy (Kato et al., 2023).

Using time-lapse to determine the timing of blastocyst forma-
tion (reflected in the expansion stage), it was observed that kinet-
ics and rate of embryo expansion are related to aneuploidy risks 
(Campbell et al., 2013; Huang et al., 2019; Cimadomo et al., 2022b). 
However, other groups failed to confirm these findings (Kramer 

et al., 2014; Yang et al., 2014; Rienzi et al., 2015). More recently, AI 
has been applied to analysing embryo morphology correlation 
with blastocyst euploidy rates (Huang et al., 2021; Zou et al., 2022; 
Bamford et al., 2023; Barnes et al., 2023; Hori et al., 2023; Kato 
et al., 2023) with promising results. Interestingly, AI score appears 
closely associated with the Day-5 Gardner grade in euploid blas-
tocysts (Kato et al., 2023). While certain aspects of blastocyst 
morphology and specific AI have been able to identify those em-
bryos at highest risk of being chromosomally abnormal, the ap-
proach lacks diagnostic accuracy. However, these methods could 
be used to identify those blastocysts with greatest probability of 
being aneuploid and hence candidates for biopsy and ge-
netic analysis.

Spontaneous collapse

A benefit of time-lapse culture is the ability to assess poorly stud-
ied blastocyst features such as spontaneous blastocoel collapse. 
Approximately one in four blastocysts show spontaneous col-
lapse and re-expansion and even fewer have more than one col-
lapse (Marcos et al., 2015). The significance of a spontaneous 
collapse for ongoing pregnancy or live birth is unclear (Marcos 
et al., 2015; Bodri et al., 2016; Sciorio et al., 2020), though most evi-
dence suggests a negative impact. Blastocysts that collapse are 
more likely to be aneuploid; however, some reports indicate a 
history of collapse does not affect euploid embryo implantation 
(Cimadomo et al., 2022a; Bickendorf et al., 2023).

Cytoplasmic strings

Cytoplasmic strings are dynamic structures connecting TE and 
ICM cells and are involved in cellular communication (Salas- 
Vidal and Lomel�ı, 2004). Appearing in 55–85% of expanded, trans-
ferred blastocysts, cytoplasmic strings are positively associated 
with implantation (Ebner et al., 2020; Eastick et al., 2021; Ma et al., 
2022; Eastick et al., 2023a; Joo et al., 2023). Similar to blastocyst 
grading in general, assessment of cytoplasmic strings has fair to 
moderate inter- and intra-observer agreement (Eastick et al., 
2023b). Though strings are associated with higher blastocyst 
quality (Ma et al., 2022), the utility of their inclusion as an inde-
pendent predictor of viability for ranking is unclear. While the 
presence of strings is significantly associated with clinical preg-
nancy when controlling for degree of expansion and ICM/TE 
grade (Eastick et al., 2023b), the multivariate analysis did not ac-
count for day of blastocyst formation.

Other morphological features

The presence of two ICMs in one blastocyst is a rare occurrence 
and warrants careful consideration. Monozygotic twinning is a 
complication more common following assisted reproductive 
technologies with significant risks to the offspring and the 
mother (Vitthala et al., 2009; Hviid et al., 2018; Busnelli et al., 2019; 
Kadam et al., 2023). Since few case reports exist of blastocysts 
with two ICMs in vitro (Veeck and Zaninovic, 2003; Payne et al., 
2007; Noli et al., 2015), splitting of the ICM is unlikely to occur un-
til after embryo transfer. Given the risks to the offspring and the 
mother, clinics may consider having a policy to not use blasto-
cysts with suspected two or more ICM. Alternatively, when two 
ICM are visible prior to transfer, clinics should have a policy 
whereby the medical team is notified to allow for proper patient 
counselling.

Several other features beyond traditional morphology may 
also be used in ranking blastocysts. While many reports correlate 
early embryo developmental features with blastocyst implanta-
tion, most do not account for blastocyst morphology in the statis-
tical analysis. The only pre-compaction variable associated with 
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blastocyst live birth, when accounting for blastocyst quality, is 

the number of cells on Day 3, where slow cleaving embryos (<7 

cells) have reduced implantation rates when transferred at the 

blastocyst stage (Wu et al., 2020; Zhao et al., 2020). Utility of this 

finding is uncertain, however, since it would only be applied 

when selecting between two blastocysts with similar Day/ 

stage/grade.

Consensus points

� Ultimately, the goal of blastocyst grading is ranking for order 

of use. 
� The Gardner grading system for blastocyst scoring should be 

used (Table 9; Supplementary Data SIV, Fig. 1). This system is 

distinguished from the prior Consensus grading by using let-

ters for the ICM/TE grades and adding additional expansion 

stages (e.g. hatched blastocyst). 
� Non-viable blastocysts should be graded as ‘D’ as opposed to 

‘C’ based on degenerative features or absence of a dis-

tinct ICM. 
� The common features that are clearly associated with im-

plantation potential include day of blastocyst formation 

(Days 4–7), stage of expansion (3, 4, 5, 6), and grade of ICM (A, 

B, C) and TE (A, B, C). 
� Blastocysts with grade C ICM and/or TE and Day 7 blastocysts 

can be viable and could be considered suitable for clini-

cal use. 
� Blastocysts with two ICM indicating potential for monozy-

gotic twinning should not be transferred without thorough 

patient counselling. 
� Assigning relative importance of each variable requires sys-

tematic multivariate analysis with a large dataset and is fur-

ther complicated when assessing fresh versus frozen 

untested and euploid blastocysts. 

7. Duration of embryo culture and frequency of 
assessments: safety versus effectiveness
The Istanbul Consensus (2011) offers a broad spectrum of mor-

phological parameters for oocyte and embryo assessment. In lab-

oratories using TLT-equipped incubators, continuous culture 

allows flexibility in the frequency and level of detail of embryo 

evaluation, without disturbing the culture conditions. In labora-

tories performing static observations, however, the frequency of 

embryo assessment should be determined considering factors 

such as the type of incubators used (bench top or big box), the 

type of culture medium (single or sequential), the use of isolettes 

for embryo handling, and the duration of embryo culture (cleav-

age or blastocyst stage). The aim is to strike an optimal balance 

between acquiring the desired information on developing em-

bryos and minimizing the disturbance of the culture conditions 

(Swain, 2014; Wale and Gardner, 2016; ESHRE Working group on 

Time-lapse technology et al., 2020).
Some ART centres still combine cleavage and blastocyst stage 

embryo transfers, as shown in our survey (Supplementary Data 

SII, Fig. 4). The duration of embryo culture, embryo morphology 

assessment and embryo transfer policy, whether for fresh or fro-

zen embryos, should primarily aim for the fastest, safest and 

most economically sustainable way to achieve the goal of fertility 

treatment. The choice of assessment methods, level of detail, 

and the duration and frequency of monitoring of embryo devel-

opment under in vitro conditions should therefore be tailored to 

the available laboratory equipment.

Current practice of cleavage stage versus 
blastocyst transfer
Our survey showed that the blastocyst stage is commonly used 
in ART centres for performing embryo transfer. Fewer than 2% of 
ART centres did not perform blastocyst transfer at all while 
17.4% performed blastocyst transfer nearly exclusively (in >95% 
of cycles) (Supplementary Data SII, Fig. 4A).

Interestingly, Day-2 and Day-3 embryo transfer were not prac-
ticed at all in 44% and 8% of ART centres, respectively. On the 
other hand, only 2–3% of ART centres exclusively practiced cleav-
age stage embryo transfer with 2.2% performing transfers on 
Day-3 and 0.7% on Day-2 (Supplementary Data SII, Fig. 4A).

Moreover, cryopreservation of blastocysts predominates over 
cleavage stage embryos. More than 50% of the respondents 
reported that embryos are exclusively cryopreserved at the blas-
tocyst stage, while in the remaining cases mostly a combination 
of cryopreservation of Day-3 and Day-5/6 embryos is performed 
(Supplementary Data SII, Fig. 4B). Day-2 and Day-4 embryos are 
never cryopreserved by roughly 75% of ART centres 
(Supplementary Data SII, Fig. 4B). A similar trend with a higher 
percentage of blastocyst (73.9%) over cleavage stage (26.1%) fro-
zen transfers can be found in the ESHRE report for 2018 (Wyns 
et al., 2022).

The transfer of Day-4 embryos occurred in <25% of the trans-
fer cycles according to 36.3% of the respondents and only 19.9% 
of the respondents reported that they cryopreserve Day-4 em-
bryos in <25% of the transfer cycles (Supplementary Data SII, 
Fig. 4). It is not clear whether the reason for the use of Day 4 em-
bryos is the earlier development of the blastocyst or the earlier 
scheduling of the day of transfer or cryopreservation at the con-
venience of the patient or the centre.

Reasons for increasing use of extended embryo culture
Several factors have contributed to the increasing use of blasto-
cyst transfer. There is consistent evidence from a multitude of 
studies showing higher pregnancy and live birth per transfer us-
ing fresh blastocyst transfer, with this observation being more 
prominent in good prognosis patients (Practice Committee of the 
American Society for Reproductive Medicine, 2018). However, a 
retrospective analysis of more than 100 000 IVF/ICSI cycles 
showed that after adjusting for indication bias, there was not 
enough evidence to suggest a difference in the odds of live birth 
following blastocyst versus cleavage-stage embryo transfer in the 
first complete cycle (Cameron et al., 2020), although the majority 
of the cycles included were performed following culture in atmo-
spheric oxygen, which is known to negatively impact blastocyst 
outcomes (Gardner, 2016). Although the cumulative live birth 
rate appears to be similar, blastocyst transfer is associated with a 
shorter time to pregnancy and to birth and lower cumulative 
pregnancy loss rates, but also higher transfer cancellation rates 
compared to cleavage-stage transfer (De Vos et al., 2016; 
Cornelisse et al., 2024).

The implementation of national strategies towards elective 
single embryo transfer to decrease multiple birth rates has 
resulted in increasing use of extended embryo culture (ESHRE 
Campus Course Report, 2001; Practice Committee of Society for 
Assisted Reproductive Technology; Practice Committee of 
American Society for Reproductive Medicine, 2012; Knez et al., 
2013; Harbottle et al., 2015; De Geyter et al., 2020; Fouks and 
Yogev, 2022; ESHRE guideline group on the number of embryos to 
transfer, 2024).

The development of TE biopsy for PGT has also contributed to 
the increasing use of blastocyst culture (ESHRE PGT Consortium 
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and SIG-Embryology Biopsy Working Group, 2020). Cleavage 
stage biopsy has been shown to have a negative impact on em-
bryo developmental competence, especially when two blasto-
meres are removed (Scott et al., 2013). Blastocyst biopsy seems to 
be safer compared with Day-3 embryo biopsy, as some studies 
have suggested that removing a small number of TE cells does 
not affect the embryo implantation or foetal development (Van 
de Velde et al., 2000; Scott et al., 2013; Tiegs et al., 2021; Cimadomo 
et al., 2023).

The increasing use of TLT in IVF laboratories, reported in 
more than 50% of all ART centres responding to our survey 
(Supplementary Data SII, Fig. 6A), also means that patients are 
increasingly offered continuous and detailed monitoring of em-
bryo development to blastocyst stage.

Initial concerns about extended embryo culture due to the 
possible prolonged influence of environmental factors on embry-
onic epigenetics have appeared to subside (White et al., 2015; 
Ghosh et al., 2017; Ji et al., 2018), although follow-up studies of 
children conceived after ART suggest that a possible influence of 
culture media, culture duration and other laboratory factors on 
infant health cannot be excluded (Berntsen et al., 2019). Some 
studies have reported a significantly higher rate of preterm birth 
after blastocyst transfer compared to cleavage stage transfer 
(Martins et al., 2016; Wang et al., 2017; Alviggi et al., 2018; Castillo 
et al., 2020; Cornelisse et al., 2024) while others have reported sim-
ilar rates (Marconi et al., 2023). In addition, blastocyst transfer 
appears to be associated with similar or lower risk of small for 
gestational age (Martins et al., 2016; Raja et al., 2023) and with 
similar (Siristatidis et al., 2023) or lower congenital anomalies 
(Raja et al., 2023) compared to cleavage-stage transfer.

One remaining question is whether in poor responders with 
low zygote numbers, embryo transfer should be done on Day 2, 
Day 3 or Day 5/6. A retrospective study showed that transferring 
embryos on Day 2 versus Day 3 in this patient group does not af-
fect early pregnancy outcomes and suggested the flexibility in 
scheduling the day of transfer at the convenience of both the pa-
tient and the centre (Sacha et al., 2018). According to another 
study, there is no difference in clinical pregnancy rates after 
fresh Day-3 or Day-5 embryo transfer in patients with 5 or fewer 
zygotes (Dirican et al., 2022). However, those with six or more 
zygotes can benefit from blastocyst transfer due to better selec-
tion options. Larger prospective studies on live birth rates also 
taking into account maternal age are needed to provide a conclu-
sive answer to the above question.

Technical considerations for extended embryo culture
The success of extended embryo culture relies on crucial parame-
ters, such as reduced oxygen concentration, optimal pH, tempera-
ture and osmolality (Gardner and Lane, 1997). Blastocyst culture 
affects logistics and workflow, as well as technical requirements in 
the laboratory, such as incubator type and capacity, frequency of 
embryo assessment, and—if performed—annotation of morphoki-
netics and culture media renewal. Success also depends on stable 
culture conditions and an efficient blastocyst vitrification pro-
gramme (Swain, 2019; Cairo Consensus Group, 2020). Therefore, 
the ART centre’s capacity to ensure appropriate conditions for 
blastocyst culture should be proven. A blastocyst culture approach 
should be introduced starting first with good responder patients 
and, after appropriate blastocyst development rate and clinical 
outcomes are obtained, gradual wider applications can be offered 
to other groups of IVF patients (Gardner and Lane, 2018; De Croo 
et al., 2020). The success of the blastocyst vitrification programme 
should be self-verified by the IVF laboratory by tracking key perfor-
mance indicators. The reference rates for blastocyst cryosurvival 
are expected to be ≥90% for competency and ≥99% for benchmark 
(ESHRE Special Interest Group of Embryology and Alpha Scientists 
in Reproductive Medicine, 2017). Due to greater experience with 
blastocyst vitrification, the rate of degeneration during warming is 
now lower than that estimated in a previous cryopreservation con-
sensus (Alpha Scientists In Reproductive Medicine, 2012).

Modern benchtop incubators with individual chambers repre-
sent a safer incubator design and provide a faster recovery time 
of all physico-chemical parameters after door openings com-
pared to older ‘big-box’ incubators (Kova�ci�c, 2021). However, in 
the case of prolonged and continuous culture of embryos, possi-
ble changes in osmolality and pH over time must also be moni-
tored (Swain, 2019), also taking into consideration the type of 
dishware, culture drop size and oil overlay.

Incubators with integrated TLT allow continuous observation 
of the morphokinetics of developing embryos with uninterrupted 
incubation throughout the preimplantation period (Meseguer 
et al., 2012). A good practice recommendation paper including a 
systematic assessment of how to approach and introduce TLT for 
IVF was published to provide centres with technical advice 
(ESHRE Working group on Time-lapse technology et al., 2020).

Due to the overwhelming evidence of the detrimental effect 
of atmospheric oxygen concentration on embryonic develop-
ment (Gardner, 2016), the use of reduced oxygen is now consid-
ered standard practice, especially for extended incubation of 

Table 9. Consensus scoring system for blastocysts.

Stage Description

Stage of expansion 1 Early blastocyst: blastocoel less than half of the volume of the embryo.
2 Blastocyst: blastocoel that is half of or greater than half of the volume of the embryo.
3 Full blastocyst: blastocoel completely fills the embryo.
4 Expanded blastocyst: blastocoel larger than that of the early embryo, with a clearly thinning zona.
5 Hatching blastocyst: trophectoderm starting to herniate though the zona.
6 Hatched blastocyst: blastocyst has completely escaped from the zona

Grade Description

ICM A Prominent, easily discernible, with many cells that are compacted and tightly adhered together.
B Easily discernible, with several cells that are loosely grouped together.
C Very few cells visible.
D No visible cells, or presence of degenerating cells.

TE A Many cells forming a cohesive epithelium.
B Moderate number of cells forming a loose epithelium.
C Few and larger cells with poor epithelia formation.
D Sparse or degenerating cells surrounding the ICM
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embryos to blastocyst stage (Kova�ci�c, 2012; De los Santos 
et al., 2016).

Frequency of embryo assessment: rationale
While the accuracy of assessing blastomere cleavages is impor-
tant, laboratories with limited number of incubators should care-
fully consider certain limitations and prioritize the safety and 
quality of the embryo culture conditions. More frequent opening 
of incubators may have a negative impact on embryonic develop-
ment (Gardner and Lane, 1996; Zhang et al., 2010; Nguyen et al., 
2018). In such situations, assessing morphology only at the end 
of the culture period may be considered, with no or few interme-
diate checks on their development.

If it is decided to practice short-term embryo culture in IVF 
cycles with large numbers of zygotes, then a more detailed 
and frequent assessment of embryo morphology might im-
prove selection of embryos by the ranking scheme given in 
this paper.

Consensus points

� Extended embryo culture is an accepted and stan-
dard practice. 

� The duration of embryo culture and frequency of static 
embryo observations must be adjusted to the equipment 
in the laboratory and staff skill, ensuring minimal 
changes in culture conditions that could affect embryo 
development. 

Conclusion
This consensus paper provides updated recommendations on cri-
teria and terminology for assessing oocyte, zygote, cleavage- 
stage embryo, morula and blastocyst development, based on a 
thorough review of evidence accumulated over the past decade. 
Critical information gained from application of TLT has provided 
the impetus for revised timings of developmental milestones, 

Table 10. List of recommendations.
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greater consideration of the influence of insemination methods 
on early embryogenesis, and presentation of a broader spec-
trum of atypical morphology detected with time-lapse imaging. 
The collated recommendations (Table 10) aim to promote stan-
dardized embryo evaluation practices to better predict viability 
and optimize embryo ranking and selection for clinical use. 
Notwithstanding the progress of the past decade, several 
knowledge gaps remain (Table 11) concerning the clinical 
value of specific morphological and morphokinetic parameters 
that warrant further investigation and scrutiny. Undoubtedly, 
the next decade will bring a more substantial incorporation 
of AI in the ART laboratory, offering solutions to the 
perpetually challenging problem of viable gamete and em-
bryo selection.

Lastly, by combining expertise and experience across institu-
tions and geographical regions, international collaborative efforts 
such as that represented by this consensus paper can contribute 
to improving research consistency, clinical practice, and most 

importantly, outcomes for patients seeking assisted 

reproduction.
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Supplementary data are available at Human Reproduction online.
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